Objed-based Programming

Introduction

COM programmingis based on an objed-oriented style of programming. In VB, this means the use of
classes and class-based oljed references. If you are comfortable defining your own classes with
logicd properties and methods, and then using these dasses to instantiate and manipulate objeds, you
can safely skip this sdion and continue the tutorial here. Otherwise, let's begin!

We will study objed-based programming in the context of an example: aform-based progress
indicaor classcdled CProgress Here's apicture of this classin adion (you should seethis for

yourself by running the gpli cation \VBCOM\Demos\Classbased ProgressindicaonApp.exe; if you
have not aready done so, you can download the labs from the Setup page):

Pogess.. |

INEENER
40%

Note the naming convention --- classes always beingwith aC. It will be helpful if you also think of
the C as ganding for a mncrete dass i.e. a dass that can be turned into a run-time objed that fulfills
some function.

First, abit of terminology. A classis compil e-time entity that a programmers writes. In VB, a dassis
produced by adding a ClassModule to your projed. A classmay contain zero or more members,
where amember is either a property (think of it as avariable) or a method (subroutine or function). At
run-time, you instantiate a ¢assto produce a objed that residesin memory. Infad, you can
instantiate the same dassover and over again, each time producing adistinct objed. Finadly, to

fadlit ate discusgon, we will use the terms client and server to denote two oljeds that are interading,
in particular where the dient objed isaccessng a property or invoking a method on the server objed:

Using the ClassCProgress

The dassis quite ssimplein design, having only one public property and two public methods:

Public Value As Integer ** percentage done
Public Sub Show() ** show the progressform
Public Sub Hide() ** hide the progressform

When this classis instantiated into an objed, the Value of the objed represents the aurrent status of the
progressindicaor, e.g. 40 (denoting 40%). By changing thisvalue, the dient can show progress. The
objed's methods, Show and Hide, are invoked by the dient to draw and erase the progressindicaor
form, respedively. Altogether, thislist of public properties and methods denotes the interfacebetween
clients and CProgress rvers.

progress
Server

(CProgress)

At thispaint, let'slook at some sample dient code which instantiates and uses the CProgressclass. If
you haven't already, open the supplied VB projed \VBCOM\Demos\Class-based Progress
Indicator\App.vbp and view the code in the cmdProgressbutton of the main form:

Dim progressAs CProgress™* objed referenceto
** CProgressinstance

Dimi AslInteger, _
j AsVariant

Set progress= _
New CProgress™* n ew instance of CProgress

Thefirst line dedares an objed reference variable (a pointer in C++ parlance) of type CProgress.
Initially, an objed reference variable pointsto no oljed, and thus has the value Nothing. The third line
uses VB's New operator to instantiate an objed of classCProgress and then sets the objed reference
variable progressto this new instance. At this point we have:

The mde continues by displaying the progressindicator form, and then exeauting aloopwhich
simulates along-running operation:

progressShow ** invoke Show method

Fori=1To10
progressValue = _
progressValue + 10 ** update by 10%
Forj =1 To 1000000: Next j ** pause to simulate adivity
Next i

Eadh time through the loop, progressincreases by 10%. Finaly, oncethe loop completes, the progress
indicator form is erased from the screen and the progressvariable reset to Nothing:

progressHide ** invoke Hide method
Set progress= Nothing ** explicitly destroy instance

Thislast step is not strictly necessary, since VB will reset the variable to Nothing automaticaly onceit
goes out of scope. However, it isimportant to note that the number of references to an objed
determines the lifetime of that objed, i.e. the duration it existsin memory. By setting progress to
Nothing we ae explicitly reducing the reference munt of that objed by 1. Once a objed’s count
reades O, it isdestroyed. Thus, inthe example dove, the objed isimmediately destroyed after the Set
statement is executed.

I mplementing the Class CProgress
If you haven't done so aready, open the supplied VB projed \VBCOM\Demos\Class-based Progress

Indicator\App.vbp and view the code in the Class Module CProgress(stored in the file CProgresscls).
Using VB's browser (F2), the dassis simmarized as follows:

=i Object Browser

|app =] Bl 2
| =] #Alv
|Classes mMembers of 'CProgress’
@ =globals= =3 Class_Initialize
2®1:CProgress {|=® Class_Terminate
1 frmMain |5 frm
1 frmProgress =% Hide

=% show

(2 S —

Fuhlic Froperty Walue As Integer
Member of App CProgress

The dassadually containstwo properties and four methods, athough thefirst 3 listed above ae
private to the dass (and thus accessible only to VB and the objed itself). The private property frmis
used by the objed to hold areferenceto the Form instance @ntaining the progressindicaor. Thisform
iscreaed in the method Class_Initialize, which is caled automaticdly by VB whenever a new
CProgressobjed isinstantiated. Likewise, the form is destroyed in the method Class_Terminate,

cdled automatically when the objed's reference munt reades 0. Here's the relevant code from the
classCProgress:

Option Explicit
Private frm As Form "** objed referenceto progressform

Private Sub Class Initidiz€()

Set frm = New frmProgress™* crede anew instance of frmProgres
Me.Value =0 "** initializeour value to 0%
End Sub

Private Sub Class_Terminate()
Unload frm "** destroy progressform instance
Set frm = Nothing

End Sub

In this case, the method Class Initializeis cdled behind the scenes in response to the dient executing
New:

Set progress= New CProgress™* crede anew
"** instance of CProgress

Thus, when developing a dass, use the Class_Initi ali ze method to initi ali ze the server for upcoming
client use. Asfor Class Terminate, in this case the method is cdled when the dient cleasthe last
referenceto the server:

Set progress= Nothing ** explicitly destroy instance

Therefore, use the Class Terminate method to cleanup (close files, destroy helper objeds, etc.) before
the server is gone for good

Now for the public interfaceof CProgress Vaue, Show and Hide. Firstly, the Vaue property is not
implemented using an integer variable, but instead isalogicd property physicdly redized by

appropriate Get and Let methods (look closely at the bottom pane of the browser window above).
Logical properties offer many benefits. validation, the &bility to take adion when a property changes,
read-only data, etc. However, a stronger motivation isthat COM simply does not allow a dassto
contain public data properties. In a COM-compatible dass the only public members may be methods.

Ignoring COM for the moment, alogical Value property makes snsein this stuation sincethe server
needs to update the progressindicator in response to a changein value. The Let method isused to
cgpture awrite to the logicd property, much like the Let statement in VBA assignsanew valueto a
variable. Note that the new value is passed as a parameter to the method:

Public Property Let Value(ByVal percentage As Integer)
frm.pbarProgressVa ue = percentage ** u pdate progressbar
frm.IblPercentage.Caption = _

CStr(percentage) & "%" ** u pdate label
frm.Refresh ** redraw form

End Property

The new valueis $mply assigned to the underlying Windows 95 ProgressBar control on the progress
form, as well aswrittento alabel. In order for the dient to be aleto read the aurrent progressvalue, a
corresponding Get method isalso provided:

Public Property Get Value() As Integer
"* return current state of progress bar
Vaue = frm.pbarProgressValue

End Property

Get methods are acually functions which return the aurrent value of the logicd property.

The final two members of CProgressare the Show and Hide methods. These ae perhaps the eaiest of
the bunch, sincetheir function is obvious:

Public Sub Show()
frm.Show ** show form and redraw
frm.Refresh

End Sub

Public Sub Hide()
frm.Hide ** erase form but leave form objed in memory
End Sub

That'sit, the dass CProgressis now completely implemented!

Classes vs. Instances

Before we begin our discusson o COM, let's review the notion of classes, and instances of classes.
Consider the foll owing client code:

Dim p1 As CProgress p2 As CProgress p3 As CProgress

Set p1 = New CProgress
Set p2 = New CProgress
Set p3 = New CProgress

plVaue=40
p2Vaue=5
p3.Vaue=99

p1.Show
p2.Show

p2.Hide
Stop ** pause dient and adivate the debugger

How many instances of CProgressexist in memory? Thred How many progressindicator forms exist
in memory (i.e. instances of frmProgress)? Thred How many of these form instances are visible on
the screen? One! Okay, now you're ready to start the first lesson on VB COM...

COM Classes and Servers

Introduction

In Visual Basic, buildinga COM-compatible objed is deceptively easy: given the dassdefinition for
this objed, you simply add the dassto a particular type of VB projed, make the projed, and youre
done. That'sit, end of tutorial! Inredity of course, there'smore to VB COM than just doing make.

First, let's define some standard COM terminology. A coclassrefersto a COM class, i.e. a dassthat is
compatible with COM. What makes VB so powerful isthat al classes creaed in VB are COM-
compatible. It will be helpful if you also think of a mclassas denoting a wncrete dass a dass that
contains functionality / code. A COM component is synonymous with coclass

A COM server isone or more mclasses compiled into asingle, distributable file. COM servers
typicdly have the file extension .dll or .exe. A COM server must be registered on a dient's machine
before that client can instantiate any of the coclassesin the server.

There aetwo types of COM servers, in-processand out-of-process If a dient instantiates a aclass
from an in-processCOM server, the resulting objed livesin the same aldress pace(and process as
the dient. However, if a dient instantiates a mclassfrom an out-of-processCOM server, the resulting
objed will live and run in a separate process--- on the same machine (locd) or a different machine
(remote). To build an in-processCOM server in VB, you crege an ActiveX DLL projed, add one or
more dassmodules, and perform meke; the result is a fil e with the extension .dll. To build an out-of-
processCOM server, use an ActiveX EXE projed type; make will then yield afile with the extension
exe.

In-Process VB COM Servers

The extension DLL stands for Dynamic Link Library, implying that an in-processCOM server is
linked into the dient upon the first instantiation of any of its coclasses. Note that the entire COM
server islinked in, not just the mclasses being instantiated. For example, suppcse aCOM server has 3
coclasses, and a dient instantiates coclassl and coclas®. Here's the resulting situation in memory on
that machine:

Client obj

/

Server Obj
(coclass1)
Server obj
{coclass2)
COM Server
Client
Code coclass!
coclass2
coclass3

Client Process

Now suppase the user, on this ssme machine, starts up another processcadled Client #2 that instantiates

coclass3. Conceptualy, the situation in memory is now:

Client obj
Server Obj
(coclass1)
Server obj
(coclass2)
COM Server
Client
Code coclassi
caoclass?
coclass3
Client Process

Client obj

l

Server obj
{coclass3)

COM Server
Client
Code coclassi
coclass2
coclass3

Client #2 Process

In esence eadt processgetsits own copy of COM Server. Why isthisimportant? Becaiseif COM
Server contains "global" variables, it isimportant to note that these variables are not shared by the
different client processs.

Out-of-Process VB COM Servers

Aswe dl know, the extension EXE stands for executable program. Thus, out-of-processCOM servers
are ompletely separate processes, running asynchronously until a dient makes a method cdl into one
of the server's objeds (at which pant the dient objed blocks urtil the server objed returns from the
method cdl). For example, suppose we have an out-of-processCOM server with 3 coclasses, and a
client objed on the same madhine instantiates coclass2. The situation in memory is:

: . B Server obj
Client obj — (coclass2)

COM Server
Client
coclassi
Code coclass?
coclass3

Client Process Server Process

What if multiple dientsinstantiate mclasses from the same COM server? Typicdly, ead instantiation
yields a different objed within the same server process

client obj - f:;;;’s:%

Client Process

‘ Server obj
LU T [(coclassl)

Client Process
Server obj

e —-
client obj (coclass2)

Client Process

COM Server

coclassi
coclass2
coclass3

Server Process

However, whether these server objeds run concurrently --- i.e. whether method cdl s from different
clients execute & the same time --- depends on how the COM server is configured; we'll save thistopic
for later, when we discuss COM activation.

Note that the cnfiguration of the COM server controls other things as well. In particular, whether or
not: (1) the different server objedsin the éove picture can share "global" variables, and (2)
instantiation yields multiple objeds in the same server (as siown above) or an entirely new server
processead time (thus# of processes = # of server objeds).

LAB: Building VB COM Servers

Timefor alab exercise!l The goal isto take an existing application, remove one of its classes, turn that
classinto aCOM component, and produce anew, COM-based application. First we'll build an
ActiveX DLL COM server, then repea the exercise by building an ActiveX EXE COM server. The
applicdion simulates along-running operation, displaying a progressindicator asit proceals. Here'sa
picture of the gp, which you can seethis for yourself by running \VBCOM\L abs\COM
Servers\App.exe (if you have nat already done so, you can download the labs from the Setup pege):

i App Main Form |

Let's pretend that prezsing the button starks a long-running operation. ..

Show progress indicator. ..

Pogress.. |

INEENER
40%

It isthe progressindicaor, defined by the dassCProgressin \VBCOM\Labs\COM Servers\App.vbp,
that will become aCOM component.

Startup VB, and crede anew ActiveX DLL projed. VB will define aninitial classmodule cdled
Classl. Seled thisclass and remove it from the projed (Projed >> Remove); when prompted, do not
save changes.

Now add the existing classmodule file "CProgresscls' to the projed: Projed >> Add ClassModule,
Existing tab, navigate to \WVBCOM\Labs\COM Servers\CProgresscls, and open. Likewise, add the
existing form "frmProgressfrm" to the projed.

Take amoment and review the ade in CProgress For help understanding this code, jump here.

View the projed explorer (View >> Projed Explorer), expand the ClassModules, and seled
CProgress View the properties window (F4), and change the Instancing property from Private to
MultiUse. This makesthe COM coclasspublicly accessible to clients.

Modify the projed's properties (a very important step when building a COM server) via Projed >>
Properties. Under the General tab, set the name to "ProgresDLL" and the descriptionto"_Progress
Indicaor In-ProcessServer (VBCOM)". Click OK.

Finally, make your COM server via File >> Make, into the same diredory as the other files. Save your
work, and exit VB.

Congratulations, you have just built your first COM server! Your COM server residesin thefile
"ProgresDLL.dII" that you made; if you cannot seethisfilein your lab dredory, make sure your
explorer window is st to display hidden files. Now, to test your work, let's build a dient appli cation.

Startup VB, and crede anew Standard EXE projed. Remove theinitial form modue Forml, and add
the existing form \VBCOM\Labs\COM Servers\frmMain.frm.

Modify the projed's properties. set the startup oljed to be frmMain, and the nameto "Client". Click
OK.

View the form, in particular the code behind the cndProgresscommand button. The sub creaes an
instance of CProgress shows progressin increments of 10, and then destroys the instance:

Dimi AsInteger
Dimj AsVariant
Dim progressAs CProgress

Set progress= New CProgress™* instantiate COM component
progressShow "** tell component to show itself

Fori=1To 10 "** update progress

progressValue = progressValue + 10

For j =1 To 1000000: Next j "** pause to simulate operation
Next i

progressHide
Set progress= Nothing ** destroy COM component

Now run the goplication (F5). Dependingon how VB is configured on your machine, you will either
get an immediate compiler error ("User-defined type not defined”, with CProgresshighlighted), or the
app will startup and show the main form. In the latter case, clicking the button will then yield the same
error message: "User-defined type not defined”.

The problemisthat our new client application is unable to locate the dassCProgress Whenever you
want to use aCOM component, you must first referenceit so that VB can find it. Thus, view thelist of
registered COM components on your machine (Projed >> References), and select the progress
indicator component we built ealier --- i.e. check theitem"_Progressindicaor In-Process Server
(VBCOM)". Click OK.

Now re-runthe goplication. It should work perfedly, merrily showing progressin increments of 10!
Finally, make an executable " Client.exe", save your work, and exit VB.

Y ou should be aleto run"Client.exe" outside of VB, and it should run identicdly to "App.exe".
However, the former uses COM, and the later does not. If you want to run multiple dients and view
multi ple progressindicaors on the screen, you will need to add a cdl to DoEventsinside the dient's
For-Next loop, and perhaps pause abit longer as well.

At thispaint, it is very important to observe the following: no spedal programming was required to use
COM with VB! The only differences from the original "App.exe" were onfiguration-oriented --- the
use of adifferent projed type in the server and setting a projed referencein the dient. On the surface
COM programmingin VB isthat easy.

For completeness, let's build the progressindicator into an out-of-processCOM server. Once aain,
the only changes will be the use of adifferent projed type for the server, and a different projea
referencein the dient:

Reped steps 1 .. 6 above, except creae an ActiveX EXE projed, set the projed name "Progres€EXE"
and the description to "_Progressindicaor Out-of-ProcessServer (VBCOM)". After you make your
projed, you should end up with a COM server in the file "Progres€EEXE.exe".

Reopen the "Client.vbp" projed, and under projed references unched the in-processCOM server and
ched your new "_Progressindicaor Out-of-ProcessServer (VBCOM)". Now run your client (F5),
and it should function as before!

To convinceyourself that the COM server actually runs as a separate executable, insert a Stop
statement in the dient immediately after the instantiation of CProgress:

Set progress= New CProgress™* instantiate COM component
Stop
progressShow ** tell COM component to show itself

Now run the dient from inside VB, and click the ammand button to exeaute the @ove mde. VB
should enter bregk mode with the Stop statement highlighted. Bring wp the Task Manager on your
computer, and you will seethat ProgresEEXE isrunning! Switch back to VB, continue execution, and
let the dient run (i.e. let the processng of cmdProgress's Click event run to completion). Return bad
to the Task Manager, and observe that ProgressEXE is no longer running. Why not? Becaisethe
client no longer has areferenceto a CProgressobjed, and when the last objedt inaVB COM server is
destroyed the server is sopped.

If you want to play... To kegp the COM server running, we need to keep at least one objed aivein the
server. This means we neel to ke the objed’s reference @unt > 0. One way to dothisin our clients
isto kegp ojed referencesin gobal variables, which never go out of scope. Inthe dient app, first
move the dedaration of the progressvariable from the Click event to the Dedarations sdion (top) of
the main form. Then, instead of instantiating CProgressin the Click event, now do thisin the form's
Load event. Finally, move the"Set progress= Nothing " statement from the Click event to the form's
Unload event. Now when you runthe dient, the COM server will be started as well, and this same
processwill continue to run until the dient terminates. Confirm this behavior using the Task Manager.
That's enough lab work for now, goodjob!

Registering aVB COM Server

As mentioned in the introduction, a COM server must be registered before a dient can instantiate ay
of the mclassesin that server. However, in the éove lab the dient app (e.g. "Client.exe") ran just fine
without any kind of explicit "registration” step. How can this be? Who registered the progress
indicator COM server? And what doesit mean for a COM component to be registered?

In short, registering a COM server means updating the Windows registry database on that computer.
The registry enables COM to locae aoclassesin response to client instantiation requests. To ease
component development, VB automatically registers --- on your development machine --- any COM
server you make (i.e. File >> Make). Thus, eat time you do make, VB urregisters the previous
version (if any) and registers the new version.

Asevidence let's bre&k the "Client.exe" applicaion by simply unregistering the COM server on which
it depends. First, in preparation, locate the file \WVBCOM\Misc\regsvr.reg and dauble-click to execute;
thisfile adds ssme entries to your registry database that makes srver registration and unregistration
easier. Next, runyour "Client.exe" in the lab dredory \VBCOM\Labs\COM Servers\ and convince
yourself that it shows progresswithout error. Now right-click on the file "ProgresDLL.dIlI" --- thein-
processprogressindicator COM server --- and seled "Unregister COM Server" from the pop-up menu.
Finally, re-run"Client.exe" and click the command button to show progress this sould yield "Run-
time aror 429 ActiveX component can't crede objed.” In other words, the requested COM server is
not registered on this machine. [Note: if you did not recave an error, perhaps your client is
instantiating the out-of-processversion of the progressindicaor. Unregister "ProgressEXE.exe" and
try again.] Tofix the gplicaion, simply re-register the COM server by right-clicking on the
appropriatefile.

How can you find out what COM servers are registered on your machine? One way isto view projed
references. Startup VB, seled Projed >> References, and you should seesomething simil ar to:

10

References - Client_vbp

&vailable References: il

Yisual Basic For Applications ﬂ Cancel
Wisual Basic runtime objects and procedures

Yisual Basic objects and procedures
OLE Aukomation Browse. ..
Progress Indicator In-Process Server (YBCOR)
[] AccountLib Type Library ﬂ
[] Acrabat

[] &wcrobat Distiller Priority
[] Active DS 115 Namespace Provider

[] Active 0S Type Library ﬂ
[] #ctive Setup Contral Library

[] ActiveE:x bype library

[] ActiveMavie contral bype library

HIA-:I:iVEK Conference Contral _ILI

4 3

— _Progress Indicator In-Process Server (WECOM)

|

Help

Locakion: [nAWE Com TutorialiwboomiLabsiCOM Servers)SolutionProgre:

Language: Standard

Thislist is produced by VB using information culled from the machine's registry database; recdl we
used thisdialog in the lab to configure the dient.

COM servers can aso be registered viathe command-line. To register / unregister an in-processCOM
server, use the REGSVR32 utili ty:

REGSVR32 ProgresDLL.dll
REGSVR32 /u ProgressDLL.dll

In the case of out-of-processCOM servers, run the server itself:

ProgressEEXE.exe /RegServer
ProgressEEXE.exe /UnregServer

These gproaches make it easy to automate the registration process in particular during applicaion
installation on a dient machine. Thistask istypicdly performed by theinstall program itself.

For now, we can safely ignore the registration problem since VB will automaticaly register COM

serversfor us. However, you neal to keep thisin mind when it comes time for deployment. We will
revisit thisissue in more detail when we present COM adivation.

| n-Pr ocess vs. Out-of-Process?

When developing a COM component, you are faceal with an immediate dedsion: crede anin-process
server, or an out-of-process grver? The short answer isthat in-processCOM servers offer better
performance whil e out-of-processCOM servers offer greder flexibility. The former are more dficient
sincethe server objedslive in the same aldress pace & the dient, enabling a much cheger
communicaion mechanism (a simple subroutine cdl). The latter are more flexible sincethey can be
deployed remotely on server machines, without having to recompil e any of the mde.

At first glance, it would appea that multi-tier applicaions are best designed using out-of-processCOM
servers. However, it is becoming quite cmmon to develop in-processCOM servers and then deploy

11

these amponents using surrogate processes. A surrogate processads as a host for an in-processCOM
server, dlowing it to run in an address paceseparate from the dient --- just like an out-of-process
COM server. However, the advantage is that the surrogate can provide servicesto its srver objeds,
such as suppart for sharing stete (i.e. "global variables'). The most important example of a surrogate
processis Microsoft Transadion Server (MTS), which among other things provides suppart for
distributed transadions. Thus, if you want to build COM components that work with MTS, you must
crede in-processCOM servers.

What's next? A discussion of client-side COM programming.

Client-ssde COM Programming

VB programmers have long been client-side COM programmers. anyone who has programmed a
control (e.g. the Text Box) has programmed a COM objed. Thus, we ae dl familiar with
manipulating an objed's properties and cdli ng an objed's methods. However, thereismoreto beinga
competent client-side programmer. In particular, there ae different ways to instantiate COM objeds,
different waysto dedare your objed referencevariables, and important COM-related functions such as
TypeOf. Finaly, polymorphism isan important client-side programming technique that should be used
whenever possble.

Note that there aetwo dstinct styles of client-side COM programming, compiled vs. scripting. The
former istypicdly done via a @mpil e-time tod such as VB6, while the latter is often done using a text
editor (Notepad?) for exeaution in arun-time environment such asIE. Aswelll seebelow, the former
offers better performance and ease of programming, whil e the latter offers flexibility. But aswe'll also
seelater (in our discusgon of server-side COM programming), these two styles will impad the design
of our COM objeds as well.

| nstantiating COM Objects

There aetwo waysin VB to creae a objed from a COM coclass New and CreaeObjed. New is
merely an optimized form of CreaeObjed, either performing one less registry lookup or bypassing
COM dltogether (when the coclassresidesin the same VB projed as the instantiating clasg. To
minimize the chance of naming conflicts when using New, always refer to a mclassusing the format
ServerName.ClassName. For example, given the progressindicaor coclasswe built in the previous
COM Serverslab, hereisthe proper way to instantiate aprogress indicator objed with New:

Set progress= New ProgressDL L .CProgress

Note that when COM servers are built in VB, the server name is derived from the projed name. A cadl
to CreaeObjed looks very similar:

Set progress= CreaeObjed("ProgresDLL .CProgress')
In this case, however, the wclassis denoted by a string (known as a ProglD). Even though resolving
the string reguires an extra registry lookup, this approac provides important flexibili ty sincethe string
can be generated at run-time (e.g. based on configuration information or user input). CreaeObjed will
also accept an additional string parameter, denoting the computer on which to instantiate the objed:

Set progress= _
CreaeObjed("ProgresDLL .CProgress', "CompanyServer")

Of course, thisonly worksif the remote computer is properly configured (more on thislater in COM
adivation).

12

Dedaring Objed References

While you may not have given it much thought in the past, it turns out that how you dedare your
variablesis very important with resped to COM. In general, you have two choices when dedaring a
referenceto a COM objed: usethe generic type Objed, or a spedfic dass-based reference. For
example, to dedare areferenceto a progressindicator objed, either of the foll owing will work:

Dim progressAs ProgressDLL.CProgress "** class-based reference

or
Dim progressAs Objed ** generic objed reference

The former dedares that progresscan only reference an instance of the CProgresscoclass(arun-time
error occurs otherwise); the latter all ows progressto reference ayy type of objed. The trade-off is
performance and ease of programming versus flexibili ty.

When using class-based references, you are bound diredly to the objed via what is known as v-
tablebinding, the most efficient form of binding avail able for COM objeds. [The term v-table stands
for virtual table, the technique used by C++ compil ers for implementing virtual methods and dynamic
binding.] Class-based references also enable Intelli Sense and compil e-time type chedking, sincethe
compil er knows exadly what type of objed is being manipulated:

f/ Client - frmMain [Code) [_ (O]
IcmdPrugress j ICIit:k j

Option Explicit (=

Private Jub cmdProgress Click()
Dim 1 Az Integer, j Az Variant
Dim progress As ProgressDLL.CProgress

3et progress = WNew ProgressDLL.CProgress
progress.

=2 Hide

For i =.e

Protga

For

Next i

==« iy

= = progress.Value + 10

Value
= 1000000 : Next Jj 'EEF pause. ..

Asyoull seein amoment, v-table binding istypicadly 3-10x faster than that avail able when using an
Objed-based reference (which relies upon what is known as late binding).

So why would anyone ever use ageneric Objed-based reference? Thefirst reason is flexibili ty.
Suppose you want to iterate acossa wlledion of different types of objeds, or write asubroutine that
accets different types of objeds as a parameter. For example, consider the foll owing subroutine
InsertAtFront, which inserts a string into the first position of either aList Box or aComboBox. In
particular, note that the second parameter is of type Objed, allowing the cdler to passareferenceto
either type of objed:

Public Sub InsertAtFront(s As String, control as Objeq)
control.Additem s, 0
End Sub

Sincebath List Boxes and Combo Boxes understand the Additem method, this subroutine exeautes fine
--- unlessof course the cdler passes sosme other type of objed, in which case arun-time aror will
ocaur ("Objed doesn't suppart this property or method").

13

The second reason for using Objed-based referencesis quite simple: it isthe only referencetype
supparted by scripting languages uch as VBScript. For example, consider the following VB Script
code, which instantiates and initiali zes a new progressindicaor:

Dim progress

Set progress= CreaeObjed("ProgresDLL .CProgress')
progressVaue=0

MsgBox "It worked!"

[You can runthis codeif you have WSH (Windows Scripting Host) installed: placethe adein atext
file, give thefile a.vbs extension, and then double-click to execute. If it fails, make sure the
ProgresDLL COM server isregistered (forget how to register? seeregistering a COM server).] Note
that scripting code is also limited to the use of CreaeObjed; the New operator is not supparted (since
class-based referencesin general are not supparted).

LAB: PerformanceTrade-offs

Asyoull seein an upcoming discusson of COM interfaces, the underlying difference between v-table
binding and late bindingis that the former binds at compile-time, whil e the latter binds entirely at run-
time (hencethe slower performance and ladk of compil e-time type-chedking). Let's withessthis
differencefirsthand.

Your first task isto creae an in-processCOM server and save your work in \VBCOM\Labs\Client-
side\. If you have not already done so, you can download the labs from the Setup page. In particular:

1. Startup VB, and crede anew ActiveX DLL projed. VB will define aninitial classmodule cdled
Classl. Rename this class CWorker, and define asingle public method cdled SomeTask as
follows

Public Sub SomeTask(i AsLong, s As String)
"** nothing
End Sub

2. Make sure the the Instancing property of CWorker is %t to MultiUse.

3. Modify the projed’s properties (a very important step when building a COM server) via Projed >>
Properties. Under the Genera tab, set the name to "Workers' and the descriptionto "_Workers
that dont redly work (VBCOM)". Click OK.

4. Finaly, make your COM server via File >> Make, producing "Workers.dll". Save your work, and
exit VB.

Recdl that a side-effed of making a COM server (viaFile >> Make) isthat VB automaticadly registers

the server on your development workstation. Now let's build a dient applicaion to demonstrate the

differencesin binding. Asbefore, save your work in \VBCOM\Labs\Cli ent-side\ as you procee:

5. Startup VB, and crede anew Standard EXE projed. On Forml, place2 command buttons and 2

|abels as shown below (the second label hasits BorderStyle property set to "Fixed Single" to make
it appea like atext box -- name this label IbITime):

14

i, Chent-side Expenement

1. Referencethe COM server you just built: Projed >> References, check *_Workers that don't
redly work (VBCOM)".

2. Addthe existing module "basClock.bas" to your projed via Projed >> Add Module; thisfile
enables usto time things, and is locaed in the diredory you are working in,
\VBCOM\Labs\Client-side\.

3. Now let's program the Click event of the "V-table Binding' command button to time 100,000cdls
to our COM server:

Const cdls= 100000

Private Sub Commandl_Click()
Dimi AsLong, worker As Workers.CWorker
Set worker = New Workers.CWorker
IbITime.Caption=""
IbITime.Refresh
StartClock

Fori=1Tocdls
worker.SomeTask i, "a string’
Next i

IbITime.Caption = StopClock
End Sub

9. Runthe gplicdion (F5), click the button, and record the time.
10. Next, program the Click event of the "Late Binding" command button. The cdeisidenticd to
the dove mde, except for the variable dedaration of worker:
Private Sub Command2_Click()
Dimi AsLong, worker AsObjed

Convinceyourself that Intelli Sense does not work with Objed-based references; you'll seethis when
you enter the following line of code & part of the For-Next loop:
worker.SomeTask i, "a string’

11. Now re-runthe goplicaion, click the second button, and record the time. How much slower islate
binding?

12. Finally, make an executable "Client.exe", save your work, and exit VB. Then run"Client.exe"
outside of VB and record the times. Y ou should withessessentially the same performance
difference

If you want to experiment further, build an out-of-processCOM server (be sure to use adifferent

projed name and description), and time cdlsto it from the dient. Y ou should find that out-of- process

COM isanother 10x slower.

15

Determining an Object's Type

Isit passhle to get the flexibili ty of Objed-based references, yet the performance and safety of class
based references? The answer isyes, with alittle bit of work and RTTI (run-time type identification).
VB's TypeOf function will query an objed at rurrtimeto determineiif it's of the requested type. If so,
you can then safely "type-cast” to a dassbased reference For example, recdl the InsertAtFront
subroutine presented ealier. Hereisan updated version, rewritten using TypeOf to enable compil e-
time type-checking and more meaningful error handling:

Public Sub InsertAtFront(s As String, control as Objeq)
If TypeOf control IsListBox Then
Dim st as ListBox
Set Ist = control ** type-cast to alist box
Ist. Additem s, 0 ** we know list boxes can Additem
Set Ist = Nothing
Elself TypeOf control is ComboBox Then
Dim cbo as ComboBox
Set cbo = control "** type-cast to a mmbo boc
cbo.Additem s, 0 "** we know combo boxes can Additem
Set cbo = Nothing
Else
Err.Raise <error code, source, "invalid parameter”>
End If
End Sub

Note that performanceis probably not enhanced in this case, sincethe overhead of TypeOf and the
type-cast (Set statement) will offset any advantage of v-table binding for the cdl to Additem.
However, if the objed was being accessed more than once, a noticeale improvement in performance
would result.

Polymor phism

When programming lots of similar objeds, exploiting polymorphism is an important technique for
writing client-side mdethat isresilient to change. An operation is polymorphic if it works on different
datatypes. For example, the VB operator '+' is polymorphic sinceit operates on integers, reds, and
strings. Classes are often designed with polymorphism in mind, all owing client-side programmers to
write more general code that dynamicdly adapts as new classes are alded to the system --- i.e. asthe
system evolves.

For example, suppose you are developing a GUI front-end for a sales application. 'Y our company sells
different types of products, e.g. Books, CDs, DVDs, Videos, etc. Each product typeisthus
represented by a dass; CBook, CCD, CDVD, CVideo, etc. However, you recgnizethat these
different classes share many features in common, for example every product has a ProductName.
Sincethis property is paymorphic, we can manipulate it in away that isindependent of the adual
products currently instantiated. For example, suppose products denotes a olledion of product
references. Then the following subroutine DisplayNames will display ead product's namein alist
box:

Public Sub DisplayNames(products as Colledion, Ist as ListBox)
Dim product as Objed

Ist.Clea
For Each product in products
Ist. Additem product.ProductName

Next product
End Sub

16

Thoughlessefficient (due to the ladk of v-table binding), the advantage of thiscodeisthat it is
product-independent: regardlessof the types of productsin the wlledion, the eove subroutine will
work without change. Thus, even as new product classes are alded to the gplication, DisplayNames
will not need to be rewritten.

I's polymorphism avail able via fast v-table binding? Yes, thisis one of the many advantages of
interface-based programming, which we discussnext.

| nterface-based Programming

Introduction

When you manipulate an objed, you do so via an interface its public properties and methods. Objeds
must implement an interfaceto be useful to clients, and clients rely upon thisinterfaceto get work
done. For example, the interfaceto our CProgresscoclass (from the COM Servers lab) contains one
property and two methods for manipulating, showing, and hiding a progressindicaor:

Public Property Vaue As Integer
Public Sub Show()
Public Sub Hide()

This can be discovered by examining the aclass diredly, or by referencing the COM server fromaVB
projed and then using the objed browser (F2). In general, an interfacededares the name of eah
property/method, as well astypesand parameter information.

The most important observation to make & this point isthat an interface once published and in use by
clients, should not be dhanged. Doing so may bres any number of existing --- and working! --- client
applications. Thus, an interfaceshould be viewed as a mntrad between an objed and its clients.

The Default Interface

As abuilder of objeds, however, what happens if you need to change a ¢asssinterface? Perhapsyou
want to redesign an interfaceto be eaier for clientsto use. Or maybe it neals to evolve in away you
had not anticipated. Or more simply, perhaps the interfaceis just plain wrong and needs to be fixed.
We know that changing an interfacemay bre&k existing client code, yet leavingthe interface ais
forces new clients to work with an inadequate design. |Isthere atechnique for evolving a dassfrom
one version to the next whil e remaining badward compatible with existing client appli cations?

The versioning problem stems from the fad that in traditional objed-oriented programming, clients
build dependencies diredly on the dass in particular, on what is known as the default interface(i.e. the
properties and methods marked public in the dassitself). These dependencies prevent the dassfrom
evolving in apositive way. The solution isto separate a ¢asss interfacefrom its implementation,
making the interface dirst-class citi zen that can be manipulated in its own right. By separating out the
default interface objeds can now evolve by implementing additional interfaces. Existing clients
continue to use the original interface while new clients have a toice of usingthe original interfaceor
amore recet one.

Given that objed-oriented programming revolves around the notion of user-defined classes, theideais
to extend thisto include user-defined interfaces aswell.

17

User-defined Interfaces

A user-defined interfaceis a standalone dass listing a set of properties and methods but containing
absolutely no implementation details. An interfaceis thus an abstrad class sinceit cannot be
instantiated --- doing so would yield an objed incgpable of exeaution. Instead, one or more mclasses
must implement the interface providing an implementation which fulfillsthe cmntrad.

For example, consider once again the progressindicator provided by the CProgresscoclass To
redesign based on user-defined interfaces, the first step would be to creae an abstrad classnamed
IProgress(typicdly in the same COM server) and dedare the necessary properties and methods:

Public Vaue As Integer

Public Sub Show()
End Sub

Public Sub Hide()
End Sub

The seaond step isto modify the aclass CProgress delete the default interface and then implement
IProgress The aclasswould now look something like:

Implements | Progress

Private Property Get IProgress Vaue() As Integer
<implementation>
End Property

Private Property Let IProgress Vaue(_
ByVa RHS As Integer)
<implementation>
End Property

Private Sub IProgress Show()
<implementation>
End Property

Private Sub IProgress Hide()
<implementation>
End Property
Finaly, the dient-side code changes very little, except for variable dedarations:
Dim progressAs ProgressDLL.IProgress
Set progress= _

New ProgresDLL .CProgress™* instantiate as before
progress Show

Noticethat the dient now uses an interface-based referenceto access the objed (versus a dassbased
reference), thus breging the dependence of the dient diredly on the aclass Conceptually, the
situation can be viewed as foll ows:

Ead interfacethat an objed implements appeas as a separate "lollypog'. Clients may interad with
an objed only through the interfaces symbadlized by its lollypops.

18

Server

Advantages?!

At this paint you might be saying to yourself: "User-defined interfaces ssem like alot of extrawork
for no obvious benefit." Whileit is true that interfacebased programming does require more dfort, in
thelong run it is well worth the investment, for many reasons.

Thefirst reason, as mentioned ealier, isto enable wmclassesto evolve whil e remaining badkward
compatible with existing clients. Thisisacemplished by requiring that an objed implement a new
interfacewhenever it wantsto make a dange to an existing one. Suppose, for example, that we want
our progressindicaor to accept ared number for the indicaor value instead of an integer. The
solution isto define asecond interfacenamed | Progres<2:

Public Vaue As Single

Public Sub Show()
End Sub

Public Sub Hide()
End Sub

and then implement both interfaces within the CProgresscoclass
Implements | Progress

Implements | Progres2

Existing clients continue to use IProgress while new clients have achoice between |Progressor
IProgres<2:

old L
Client o

Server

The seaond reason motivating user-defined interfacesis encapsulation: all properties and methods of a
coclasstruly become private. The only public members of a dass reside within the interfaces, and thus
outside the mclassitself. The benefit isthat clients are unable to see and therefore depend upon,
private implementation details. These detail s are then freeto change over time.

The third reason is that efficient polymorphism is now available via v-table binding. For example,
recdl our ealier example of palymorphism involvinga company selling different types of products:
Books, CDs, DVDs, Videos, etc. Each product typeis represented by a aoclass (CBook, CCD, CDVD,
CVideo, etc.), where these dasses al share a @mmon set of functionality (such as ProductName).
Earlier, we programmed these objeds paymorphicaly using an Objed-based reference

19

Dim product as Objed "** an objed-based reference

"* display each product within colledionin alist box
Ist.Clea
For Each product in products
Ist. Additem product.ProductName
Next product

However, use of the Objed data-type isinefficient sinceit relies upon late binding. The solutionisto
redesign your product classes with a user-define interface(l Product), and then program against this
interfacein the dient. Assuming that every product coclassimplements | Product, the resulting client
code dhanges very dightly --- adifferent variable dedaration. However, thistrivial changeis enough
to enable v-table binding:

Dim product as _
ProductServer.IProduct ** interface-based reference!

"* display each product within colledionin alist box
Ist.Clea
For Each product in products
Ist. Additem product.ProductName
Next product

Conceptually, the objeds within the alledion now appea asfollows:

RETE

B
c 3

Thefinal reason for learning wer-defined interfacesis that COM programming is based largely upon
interface-based programming. In other words, a COM programmer is an interfaceprogrammer. Thus,
to master COM, you must master interfaces.

LAB: Client-sde Programming with User-defined I nterfaces

In thislab we will focus on client-side interfaceprogramming. The goal isto work with interface-
based references, paymorphism, and versioning. Note that in alater sedion wel'll shift our attention to
server-side interfaceprogramming, where youll get a chanceto build the COM server you'll be using
here.

Ultimately you will build two clients, aversion 1 and aversion 2. Thiswill simulate the evolution of a
client-side gpin response to the evolution of the underlying COM server. To arient yourself, explore
the diredory \VBCOM\Labs\Interfaces-client-side\ (if you have not already done so, you can
download the labs from the Setup page). Noticethere ae two in-processCOM servers,
"ProductServer(vl).dll" and "ProductServer(v2).dll". Likewise, noticethere ae two client-side gpsin
the Solution\ sub-diredory, "Client(v1l).exe" and "Client(v2).exe". Due to user-defined interfaces and
good pogramming techniques, either client app works with either COM server; you'll | earn some of
these techniques in the lab.

20

Firgt, let's ssehow the dient applications behave. [NOTE: although you can define new products via
the dient app, this product information is not stored and thus does not appea the next time you start
the dient.]

1. Register the vl COM server; seeregisteringa COM server if you forget how. Thisversion
dedaresan interface cded IProduct, and three @classes that implement it: CBook, CCD, and
CVideo. Now run "Client(vl).exe" from the Solution\ sub-diredory. Note that there ae 3 types of
products. bodks, CDs, and videos. Thelist box displays the name of each such product, and for
ead you can view 3 kinds of information: type, price and quantity. Here's a screen snapshot:

5 Client front-end for products |

File Products

Bodks j Type Book
Frice 19.95

Ezzential COM Cuantity A

kb Dz

Ship of Gold

The Green Mile

i The Perfect Storm

Now run "Client(v2).exe", and olserve that it behaves exadly the same, i.e. the new client is
badckward-compatible with vl of the COM server. Thisisdueto the fad that "Client(v2).exe" chedks
before using any feaures edfic to v2 of the COM server.

2. Now unregister v1 of the COM server, and register v2. This COM server has an additional
product coclass(CDVD), and an additional interface(l ProductExtralnfo) that is implemented by
two of the mclasses. For badkward-compatibili ty, the coclasses also continue to implement the
IProduct interface enabling the COM server to suppart v1 clients. Asproof, run V1 of the dient
app ("Client(vl).exe"). Notethat it behaves exadly as before, with the exception that it displays
DVDsaswell. However, to seethe impact of the new interface run v2 of the dient app
("Client(v2).exe") which is designed to explicitly take advantage of |ProductExtralnfo whenever
posshle:

i'-‘u Chent front-end for products] |

File Products

Books j Type Book
Price 19.55
Essential COM Wuantity |5
Maoby Dick Author 5. Junger
Ship of Gold Publizher |\ Morton and Co.
The Lisen Mile PubDate | 1397

i The Perfect Storm

Noticethat some bodks now display additional information, such asthe booKs author. Also, observe
that the type of extrainformation may differ, e.g. some bodks have a"Pub Date" while others do not.
Thisinformation is being provided via the IProductExtral nfo interface which v2 of the dient is smart

21

enoughto use when implemented by an objed. One other coclassal so implementsthisinterface can
you determine which it is? [Hint: what other type of product has extrainfo?]
Okay, let'sbuild version 1 of the dient.

3. First, unregister v2 of the COM server and re-register v1.

4. Now start VB by opening tp the projed "Client.vbp" in \VBCOM\Labs\I nterfaces-cli ent-side\.
Referencethe vl COM server: check theitem " Product Server for Client-side interface-based
programming." Bring up the browser (F2), and browse the ProductServer library. Y ou should see
3 coclases and one interface Browse ea&h of the wmclasses --- note that no public members
appeda, sincethe default interfaceof each coclassis empty. In other words, al coclassdetail s are
private! The only way to manipulate these wclassesis via auser-defined interface in this case
IProduct. Unfortunately, VB's browser does not tell you which interfaces are implemented by
which coclasses; you lean by way of documentation (or by using atod such as OleView, which
we'll introducelater). Famili arize yourself with the interfacel Product.

5. When the dient app starts, it builds a clledion of product objeds, displays the avail able product
typesin the drop-down list box named cboTypes, and then triggers the Click event for cboTypesto
load all the product namesinto the list box IstProducts. Thisisall done in the main form's Load
event. You should pretend that theinitial product information is being read from a database (even
though it isadually being generated by hand); seethe module basProducts for more detail s.

6. Your first task isto implement the private subroutine ListProducts behind the main form. This
routineis cdled at various timesto display the relevant product names in IstProducts. Y ou wil |
either display every product in the wlledion (which is referenced via aglobal variable cdled
products), or just those products of a particular type (e.g. "Book™). Thisis controlled by the
current selection in the drop-down list box, available via doTypes.Text. Use aFor-Each loopto
iterate through the wlledion, and an objed reference variable of type ProductServer.lProduct.
Note that by programming against this interface your code will remain compatible with future
versions of the COM server.

7. When you are done, save your work and run the dient app. Y ou should be &le to view product
names in the list box; be sure to seled each different product type from the drop-down list, and
make sure 5 products are displayed in eat case (there ae 5 bodks, 5 CDs, and 5videosin the
"database").

8. Thenext step isto display a product'stype, price and quantity in the grid grdinfo when its nameis
clicked uponinthelist box. In particular, modify the Click event of IstProductsto first locate the
appropriate product in the alledion, and then display itsinformationin rows0, 1 and 2 d the
grid. Once gain, be sure to use an objed reference variable of type ProductServer.IProduct.

Save and test your work.

9. Thefinal step isto alow usersto define new products viathe form frmNew. Thisformis
displayed modally in response to the user seleding Products >> New... from the main form.
Modify the Click event of the OK button (cmdOK) to creae an objed of the gpropriate type,
initializethe objed, and add it to the wlledion with the product's name aitskey. To remain
compatible with future versions of the COM server --- which may introduce new coclasss --- use
CreaeObjed to instantiate the product (instead of New). Dynamically crede the ProglD that
CreaeObjed neals by concaenating the string " ProductServer.C" with the requested product type.

10. Save, run and test. Your client application should be fully functional. When you are satisfied,
build avl exeautable of the dient as"Client(v1l).exe".

Exit VB, and run"Client(vl).exe" to make sure it works. Now unregister v1 of the COM server and

register v2. Sincev2 continues to suppart the IProduct interface your viclient app should function

properly without change; rerun your "Client(v1).exe" to convinceyourself thisistrue. Also, sincethe

v1 client uses CreaeObjed to instantiate objeds, note that it automaticaly adapts to the presence of a

new coclass--- DVDs--- in the v2 product server.

Leaving V2 of the COM server registered, let's build a new version of the dient app to take advantage
of the server's new interface IProductExtral nfo.

11. Reopen "Client.vbp" and confirm that v2 of the COM server is currently referenced (i.e. that
" Product Server (v2) for Client-side interface-based programming” is chedked). Then, under the
Make tab of the projed’s properties, change the conditional compil ation argument to "version = 2".
This alowsthe ade in basProducts to properly instantiate the products at program startup when
v2 of the COM server is used.

22

12. Browse the ProductServer library and study I ProductExtralnfo. It consists of threemethods that a
coclassmust implement as foll ows:
"** adds a (key, value) pair to the product
"** (e.g. "Author","S. King")
Public Sub Addinfo(key As String, value As String)

"** getstheith (key, value) pair (1 <=i <= InfoCount)

"* and returnsit via parameters,

"** asoreturning True if successul else False

Public Function GetInfo(i As Long, key As String, _
value As String) As Boolean

** returns the number of (key, value) pairs
"** for this product
Public Function InfoCount() AsLong

Your god inthe dient isto use thisinterface--- if and only if it'savailable --- to display a product's
extrainfo in the grid when the product's name is clicked upon in the list box.

Thus, modify the Click event of IstProducts as follows. First, use TypeOf to query the particular
product being displayed in the grid to seeif it implements ProductServer.lProductExtralnfo. If so,
type-cast the existing product objed reference (via aSet stmt) into another objed reference variable of
type ProductServer.lProductExtralnfo. Then, for ead (key, value) pair the objed contains, add
another row to the grid (Rows = Rows + 1), display the key in column O of the new row, and display
the valuein column 1.

That'sit. Now save, run, test. When you click on bodks and videos, you should see etra product
information; CDs and DV Ds do not currently suppart IProductExtralnfo. Finally, build av2 of your
client appinto the file "Client(v2).exe" and exit VB.

Outside VB, run"Client(v2).exe" and make sure it works properly. Before we finish, it isworth
emphasizing the subtle importance of using TypeOf to query an objed at run-time (vs. assuming that
an objed supparts a particular interface ad just usingit). For example, unregister v2 of the COM
server and re-register v1 --- the use of TypeOf iswhy the v2 client app till runs corredly, even with an
older version of the COM server that never head of |ProductExtralnfo! Likewise, suppase the
coclasses CCD or CDVD (or some other coclas9 implement | ProductExtralnfo in afuture version of
the COM server --- the run-time cal to TypeOf will then return True, and v2 of the dient app will
automaticdly display the extra product information!

Asyou can see interface-based programming, combined with good programming techniques, can
enable smooth evolution of software on both the dient and the server.

What's Next?
Before we can discuss interface-based programming on the server-side, we need to lay the foundation

for exadly how COM servers are locaed, and how COM objeds are instantiated. Thiswill introduce
you to GUIDs, the registry, class factories, and the like. Henceour discussion of COM adivation.

23

COM Activation

IDL

Asyou are now aware, a COM programmer is an interfaceprogrammer : programming against
interfaces on the dient-side, and implementing interfaces on the server-side. Conceptualy, COM
programmers view the world as foll ows:

Server

Recdl that one of the motivations for COM isits ability to suppart clients and servers written in
different languages (hence the famed DevelopMentor battle ay that "COM islove!"). Thisability is
based upon alanguage-neutral approac for defining interfaces. Instead of C++ or Javaor VB, an IDL
(InterfaceDefinition Language) is used to define eah interface in particular, COM uses MIDL
(Microsoft IDL, pronounced "midde"). MIDL is often referred to as the language of COM.

For example, recdl the IProductExtral nfo interfaceyour programmed against in the previous lab.
When viewed using VB's browser, thisinterface ppeaed as.

Public Sub Addinfo(ByVal key As String, ByVal val As String)
Public Function GetInfo(ByVa i AsLong, key AsString, _

val As String) AsBodean
Public Function InfoCount() As Long

In redity, however, the interfacewas actually defined by the following MIDL:
interfacel ProductExtral nfo

HRESULT Addinfo([in] BSTR key, [in] BSTR va);
HRESULT Getlnfo([in] longi,

[in, out] BSTR* key,

[in, out] BSTR* val,

[out, retval] VARIANT_BOOL*);
HRESULT InfoCount([out, retval] long*);

b

The @ove MIDL was compil ed into the COM server ("ProductServer(v2).dll") when it was built. This
interfaceinformation was then accessed by VB when you referenced the server via Projed >>
References, thereby enabling browsing, IntelliSense, type-checking and v-table binding. Aswell see
in amoment, compil ed interfacedefinitions will be needed for other reasons as well.

While adetail ed discussion of MIDL is beyond the scope of thistutorial, afew things should be readily
apparent from studying the previous MIDL.:

All COM methods are functions returningan HRESULT (32-bit integer).

VB types are converted into equivalent MIDL types.

ByVal parameters are passed in to the server, while ByRef parameters are based in and bad out.

VB functions are internally defined with an extrareturn (i.e. out) parameter.

Although most VB COM programmers know very little @out MIDL, the more you lean, the eaier it
isto understand COM and communicate with other COM programmers.

24

Type Libraries and GUIDs

Most COM-based todls and services do not parse MIDL diredly. Instead, they exped MIDL inits
compiled form --- atype library. Every COM server typicdly has an associated type library, either
compil ed into the server or as a separate file (with a .tlb extension). For example, when you reference
aCOM server in VB (i.e. Projed >> References), VB looks for and reads the type library. Likewise,
when you build a COM server using VB (i.e. File >> Make), by default VB writes atype library into
the COM server file for you.

Exadly what information does atype library contain? Firstly, it dedaresthe existenceof al public
interfaces and coclasses in the server. For example, in the previous lab, thisis how VB knew that v2 of
ProductServer contained two user-defined interfaces (1Product and | ProductExtral nfo) and four
coclasses (CBook, CCD, CDVD and CVideo). Seaondly, to eliminate the chance of name-colli sion
with other COM servers, type libraries define the mapping from text-based names to globally unique
identifiers (128bit integers). Known as GUIDs (pronounced "ga-wids'), every interface coclass and
the type library itself is assigned a different GUID. GUIDs are onveyed using MIDL's uuid keyword
(universally unique id), written in hex (yielding 32 hex digits), and unique throughout the world.

Type libraries primarily contain these two sets of information: alist of al public interfaces and classes,
and their GUIDs. Thus, looking at v2 of ProductServer in more detail, we seeinitialy the names of the
type library as well as the user-defined interfaces:

[uuid(D2A5D8EC-B8B1-11D3-9EA9-0010A4F15889 |
library ProductServer

[uuid(D2A5D8ED-B8B1-11D3-9EA9-0010A4F15889 |
interfacel Product

{
b

[uuid(D7411E76-B94C-11D3-9EAB-0010A4F15889 |
interfacel ProductExtralnfo

{
b

InterfaceGUIDs are known as |1 Ds (interfaceids). Then comes each coclass Note that VB-generated
coclasses always contain a default interface In ProductServer, since none of the mclasses contain
public propertiessmethods, all such default interfaces are thus empty:

[uuid(D2A5D8EF-B8B1-11D3-9EA9-0010A4F15889]
interfaceCBook { }

[uuid(D2A5D8F0-B8B1-11D3-9EA9-0010A4F15889]
coclassCBook {

[default] interfaceCBook;

interfacel Product;
interfacel ProductExtral nfo;

h

[uuid(D2A5D8F1-B8B1-11D3-9EA9-0010A4F15889]
interfaceCCD { };

[uuid(D2A5D8F2-B8B1-11D3-9EA9-0010A4F15889 |
coclassCCD {

[default] interfaceCCD;
interfacel Product;

h

25

ulid(D7411E78-B94C-11D3-9EAB-0010A4F15889]
interffaceCDVD { };

[ulid(D7411E79-B94C-11D3-9EAB-0010A4F15889 |
coclassCDVD {

[default] interfaceCDVD;
interfacel Product;

h

[uuid(D2A5D8F3-B8B1-11D3-9EA9-0010A4F15889 |
interfaceCVideo{ } ;

[uuid(D2A5D8F4-B8B1-11D3-9EA9-0010A4F15889 |
coclassCVideo {

[default] interfaceCVideo;

interfacel Product;
interfacel ProductExtral nfo;
b
};

CoclassGUIDs are known as CLSIDs (classids). Later, when we discuss ®rver-side COM
programming, you'll seehow to view the adual type library.

Herea GUID, Therea GUID

Even though VB hides all traces of GUIDs from both client-side and server-side COM programmers,
you still must be aware of them. In particular, you need to know that when you build a v-table bound
client application, the GUIDs from the referenced type library are compiled into the gp. For example,
the foll owing client-side COM code

Dim product As ProductServer.IProduct ** interfacebased oljed reference
Set product = New ProductServer.CBook "** instantiate CBook coclass

If TypeOf product Is ProductServer.IProductExtralnfo Then

End If
would be compiled to reference @class D2A5D8F0-B8B1-11D3-9EA9-0010A4F15889 aswell as
interfaces D2A5D8ED-B8B1-11D3-9EA9-0010A4F15889and D7411E76-B94C-11D3-9EAB-
0010A4F15839. Even late-bound clients, which use ageneric objed-based reference, are compil ed to
aspedficllD:

Dim product2 As Objed "** generic objed-based reference

(more on this when we discussCOM interfaces). On the other hand, note that using CreaeObjed
(instead of New) resultsin a different dependency --- on the ProgID instead of the underlying CLSID:

Set product = CreaeObjed("ProductServer.CBook™)
In this case only the string is compil ed into the gopli cation.
When building a COM server, the same sort of thing happensthere as well. Eacdh coclassis compiled

with the GUIDs of theinterfacesit implements, and the server itself is compil ed with the GUIDs of the
coclasses that can be instantiated.

26

Finally, whenever you reference aCOM server (i.e. itstype library) inaVB projed, you are
embedding into that projed areferenceto the type library's GUID.

At this point, you may be starting to wonder how all these GUIDs get mapped to the proper entity: "If
aVB projed references type library D2A5D8EC-B8B1-11D3-9EA9-0010A4F15889 how is the adual
typelibrary found?' Or: "How isareferenceto CLSID D2A5D8F0-B8B1-11D3-9EA9-
0010A4F15889 in the dient turned into an instance of CBook on the server?' The latter isan
espedally good question when you consider that the server could be anywhere on the network...

The Registry

Now we have mme to the main thread of thisdiscussion: COM adivation. Exadly how are COM
servers and their type libraries locaed? Oncelocaed, how isa aclassinstantiated (adivated)? How
does adivation impad future method cdl s between client and server? Type libraries, GUIDs, and the
registry all play arolein answering these questions.

Recdl that before aCOM server can be used, it must be registered on the dient machine. For example,
an in-processCOM server can be registered using the REGSV R32 utility:

REGSVR32 ProductServer(v2).dll

When you register a COM server, you are redly just copying information from the server's type library
into the machine's registry database. In particular, ProglDs are alded to sedion
HKEY_CLASSES ROOT (HCR), CLSIDsto sedion HCR\CLSID, Il Dsto sedion HCR\Interface
and type library GUIDsto sedion HCR\TypeLib. Sincethese entries are dl i nter-related, they
typicdly refer to ead other aswell: ProglDsreference CLSIDs, CLSIDs and I Ds referencethe type
library, etc.

To seewhat adually gets dored in the registry, go ahead and register v2 of ProductServer (it's sfe to
do thisregardlessof which version of the server is already registered). Then run regedit, open HCR,
and look for the Progl D "ProductServer.CBook". Open this key, and you should seethe underlying

&' Registry Editor

Beaisty Edit Y¥iew Help

-1 ProdLookUp.ProdLocklUp1 <]
= ProductS erver CBook

{:l Products erver. CCD .
F-_1 ProductS erver COVD

{:l PraductS erver. Cvidea _ILI
4| - | b

|r-.-1_|,| ComputersHEEY_CLASSES _ROOThProductServe
CLSID that it maps to:

27

=]
M ame | Data
[Crefalt) "D 2450 8F0-B2E1-1103-9EA9-001 0A4F 15889}
1| | i
r.CBoak \Clzid o

Now look for the CLSID key under HCR, and locate CLSID D2A5D8F0-B8B1-11D3-9EA9-
0010A4F15889. Open thiskey, and youll find:

&' Registry Editor

Begistrp Edit Wiew Help

D {024BDBEE-BEET-11D3-9EAS-0010A4F 152349} ;I
El@ {02480 2F0-E2E1-11D3-9EA9-001 Qa4F 15229}
D Implemented Categonies
S ImprocServer32

-] {D245DEF2-BE3E1-1103-9EA9-001044F 15223}
-] {D245DEF4-B3E1-1103-9EA9-001044F 15229} _ILI
3

<] |

|h-1_|,| ComputersHKEY_CLASSES_ROOTACLSIDM{DZ245DEF0-B881-1103-9E:

IM[=] E3
M ame | Data
[Drefault) "ProductServer. CBook"
| | i3
&9-0010A4F1 5329} o

In particular, noticethe sub-key entitled "InprocServer32". Thisidentifiesthe cclassas part of anin-

processCOM server, where the default value for this sub-key dedares the location of the server file:

28

&' Reqistry Editor

Begisty Edit “iew Help
{:I {DZ&EDBEE-EEBLH[;I
=1 {D265D8F0-BERT-11C
{:l Implemented Cate:
) (e

-2 {D2450EF2-B581 itlll
1| | b

|h-1_|,| ComputersHKEY_CLASSES_ROOTACLSID

M [=] E3

M amne | D ata
[Crefailt] "D:AWE Com TutanialhwboombLabzhnterfaces-chent-zidehProductServer(y 214l
Threading... “Apartment"

1| |]

WD24B0EF0-BEE1-110 3-9EA3-001 0A4F 158891 nprocs erver 32 i

With enough patience, you should be aleto locae eab ProglD, CLSID, IID, and the type library
within the registry. While you may not yet understand ead of the sub-keys you encounter, you will
shortly.

COM Activation

Activation is the processof creaing an adua objed in memory from a dient-side cdl to instantiate ---
regardlessof where the coclassmay live. COM's built-in suppart for this location transparency is one
of its most important motivations.

There aethreedistinct adivation cases. in-process locd, and remote. Obvioudly, the first case
involvesin-processCOM servers, the latter two bah involve out-of-processCOM servers. [For a
review of the differences and trade-offs, click here.] Keep in mind that in ead case, the dient-side
instantiation code remains the same, for example:

Set product = New ProductServer.CBook

What determines the particular adivation ceseis (a) the configuration information in the registry on the
client and server machines, and (b) the type of COM server. And if the COM server is built using VB,
changingitstypeis smply a matter of modifying a projed property, not the aoclasses themselves.

In ead case, the same basic adivation sequence shown below is foll owed (assume for now that the
clientisusing VB's New operator to initiate adivation). The cdl to New first triggersa cdl from the
VB rurttime to the COM run-time (signified by "OLE32.dll"); the CLSID and Il D are passed from VB
to COM at this point. COM's Service Control Manager then getsinvolved (signified by "RPCSSexe",
and affedionately known asthe "SCuM"), and is responsible for locating the server viaregistry lookup

28

of the CLSID. If the server is not arealy loaded/running, the SCuM will | oad the DLL or start the
EXE running, as needed. Next the SCuM cdlsinto the server's Class Fadory objed, asking it to
instantiate the given coclass (based on the CLSID) and return a referenceto the desired interface(based
onthellD). Classfadoriesare responsible for the atual credion of COM objeds at run-time, and
every COM server must contain a dass fadory objed capable of instantiating ead coclassin the
server. Oncethe objed has been creaed, the dass fadory objed returnsthe gpropriate interface
based reference badk to the SCuM, which in turn returns the reference badk to VB and the dient app.
At this point the adivation is complete, COM's work is done, and now the dient can begin making
method cdl s on the server.

T Server
._
® Object 1
[]
|
._
o Object 2
[]
e— Class
e— Factory

OLE32.DLL

COM's Service Control Manager (SCuM)

What if the dient uses CreaeObjed instead of New? VB'srun-time ssimply performs an initial registry
lookup to map the given ProglD to the neaded CLSID. Activation then proceeals as discussed above.

I n-processActivation

In the in-processcase, adivation foll ows the éove sequence exadly. You can view a PowerPoint
animation of the process clicking the mouse to advance. Note that the animation instantiates two
objeds, yet the DLL isloaded only once (and into the same aldress pace athe dient app). Also,
keep in mind that oncethe adivation processis complete, the dient has a dired referenceto the objed
--- the SCuM is no longer involved.

L ocal Activation

Inthe cae of locd adivation, the server runs out-of-processbut on the same machine athe dient.

The most important difference from the in-processcase is that additional objeds are required to
implement the remote procedure cdl (RPC) communicaion mechanism used with out-of-processCOM
servers. COM uses RPC becaise it mimics gandard procedure cdli ng, an approach already famili ar to
programmers. These alditional objeds, known as the proxy and stub, creae the il lusion that the dient

30

iscdlingthe server diredly. Inredity, however, the dient cdlsthe proxy, the proxy communicaes
with the stub, and the stub cdl s the server:

9—

o rox == stub
® proxy

The proxy and stub work together to enforce the semantics of a standard procedure cdl i n the remote
case --- aaoss process(and pdentialy machine) boundaries. Thus, they perform two critical
functions. (1) blocking the dient until the server returns from the cdl, and (2) marshalling parameters
badk and forth between client and server.

Note that the dient and server are oblivious: the proxy impersonates the server, and the stub
impersonates the dient. Infad, for al intentsand purposes, the proxy is the server from the
perspedive of the dient; likewise, the stub isthe dient from the perspedive of the server. Thisis how
COM adhieves location transparency, sincethe proxy and stub are inserted at run-time & needed. On
the other hand, COM is not transparent with regardsto performance method cdlsto locd, out-of-
processCOM servers are & least 10x slower than equivalent in-process grvers. Thisis primarily due
to the overhead imposed by the proxy and stub. [Y ou may even have withessed this $owdown
yourself in an ealier lab experiment; if not, you are encouraged to go badk and try it when you are
done here. |

Here is a PowerPoint animation of the locd adivation sequence Observe how the proxy and stub are
inserted at run-time, in particular with the proxy in the dient and the stub in the server. But where do
the proxy and stub come from? Interestingly, whileit is pasgble to write your own proxy-stub code (in
C++), it is much more cmmon for a austom proxy-stub pair to be generated at run-time based on the
interfacebeing acessed by the dient. When the SCuM neels a proxy-stub, it doesalookup of the [ID
in the registry to locate bath (@) the type library that defines this interface and (b) the CLSID denoting
the proxy-stub code. For example, here's what you'll find in the registry for [ID D7411E76-B94C-
11D3-9EAB-0010A4F15889(I ProductExtral nfo) assuming v2 of ProductServer:

&' Reqistry Editor

Beqisty Edit “iew Help

-] {DECOABE3-0000-11D2-91 RE-0020AFGE324F)} ;l

(=R F 0 7411E 76-B94C-1103-9E AB-001 044F 15289}

] ProsyStubClsid

-7 ProwyStubClzid3z

P b {23 TwpeLib IS

& {D7411ETE-BI4C-1103-9EAB 001 044F 15389}

-] {D7836CF1-1045-1101-BE 07-004400575603} _ILI
[

<]
|M_I,I ComputertHEEY _CLASSES_ROOT% nterface’D7411E7E-B34C-1103-5

31

IS [=] E3

M ame | Data

[Drefault) "IProductE stralnfo"

KN o
/

JEAE-001 0A4F15883)

By default, COM servers produced using VB rely upon COM's Universal Marshaler (in
"OLEAUT32.dlI") to huild custom proxy-stub code & run-time based on type library information.

Sinceproxy and stub oljeds are based on the target interface note the implicaion: proxy-stub codeis
generated and inserted on both a per-objed and a per-interfacebasis. For example, the following client
code instantiates an objed with two interfaces and then sets a variable to reference eah one:

Dim product As ProductServer.IProduct, _

extra As ProductServer.lProductExtral nfo
Set product = New ProductServer.CBook
Set extra = product

The result istwo proxy-stub peirs: the first from product to the objed's IProduct interface and the
second from extra to the objed’s | ProductExtralnfo interface

Remote Activation

Thefinal caseisthat of remote adivation, in which the server runs out-of-processon a diff erent
machine than the dient. The primary difference between thisand locd adivation isthat the dient's
SCuM has to communicate with aremote SCuM in order to adivate the desired coclasson the server.
Otherwise the processisidenticd. The foll owing PowerPoint animation summarizes all three
adivation sequences.

Note that in the remote case, the COM server must be registered on both the dient and the server
madhines. In addition, the server's type library must be installed on the dient machine to suppart proxy
generation; obviously, the COM server and itstype library must be installed on the server machine.
Finally, CLSIDs on the dient and server may refer to ogtional registry information in the form of an
ApplD (COM Applicaion ID, under HCR\AppID). On the dient, an ApplD contains the name of the
remote server machine to be used for adivating the aclass This value represents the default,

however, and can be overridden if the dient instantiates by providing a seoond parameter --- the
machine name --- to CreaeObjed:

Set product = CreaeObjed(_
"ProductServer.CBook", "<remote machine name>")

In this case, the SCuM ignoresthe Appl D registry setting (if any) and tries to adivate the coclasson
the spedfied machine. On the server-side, an ApplD is used to override the default settings for such
things as access, launch control, and strength of authentication/privacy. Typicdly, the utility dcomenfg
is used to configure Appl Ds on the server machine, althoughthisis done aitomatically if you are using
Microsoft Transaction Server (MTS).

32

Interfaces are more than just a programming style --- they enable COM to achieve language-
independence and location transparency. And while COM adivation is a potentially expensive process
these goals are generally worth the @st.

What about COM deactivation? In other words, how are objeds destroyed? COM uses atechnique
known asreference munting, in which each objed maintains an internal count of how many
references are aurrently pointing to it. When another referenceis t, the dient isresponsible for
informing the objed; likewise when areferenceis cleared. Eventually, when its count reaches zero, the
objed destroysitself. The good news isthat VB automates the processof deadivation; you'll seehow
when we discussCOM interfages.

But firgt, it'stime to consider COM programming from the perspedive of the server.

33

Server-sde COM Programming

Interfaces

At this point we have discussed threeimportant aspeds of COM: interfaces, cli ent-side programming,
and adivation:

o

proxy - stub

._

Now it's time to focus on the fourth and final piece--- the server.

Server-side COM programming amounts to implementing one or more interfaces in a public coclass.
Recdl that there ae two types of interfaces, the default and user-defined. The default interface
contains al public properties and methods in the wclass every coclass defined using VB has a default
interface evenif it'sempty. A coclassmay a so implement any number of user-defined interfaces.

For example, let's revisit the progressindicator COM server.

Pogress..]

INEENER
40%

The server contains one cclassCProgress which has avery simple default interface

Public Value As Integer ** percentage done
Public Sub Show() ** show the progressform
Public Sub Hide() ** hide the progressform

How isthisinterfaceimplemented? Asshown in \VBCOM\Labs\COM
Servers\Solution\ProgresDL L .vbp, CProgress("CProgresscls') simply defines the foll owing four
public methods (if you have not already done so, you can download the labs from the Setup page) :

"** hidden referenceto underlying progressform
Private frm As Form

Public Sub Show()
frm.Show
frm.Refresh

End Sub

Public Sub Hide()
frm.Hide
End Sub

"** g et percentage done

34

Public Property Get Value() As Integer
Vaue = frm.pbarProgressValue
End Property

"** U pdate percentage done

Public Property Let Value(ByVal percentage As Integer)
frm.pbarProgressValue = percentage
frm.Ibl Percentage.Caption = CStr(percentage) & "%"
frm.Refresh

End Property

Note that the Value property isimplemented as alogicd property with Get and Let methods: thisis
required by the rules of COM, since data properties are now al owed (interfaces may contain methods
only). Also, note that the coclass's Initializeand Terminate events are used to crede and destroy,
respedively, the underlying progressform referenced by frm.

What about user-defined interfaces? Once defined, these can be implemented by any number of
coclasses using VB's Implements keyword. For example, suppose we want to evolve the progress
indicaor with a Cancd button so that the user can cancd the operation being performed. First we
define an appropriate interface | ProgresCancd:

Public Sub EnableCancd () ** show the Cancd button
"** returns True if button was pressed
Public Function Cancdled() AsBodean

Thisinterface #owsthe dient to show a Cancd button, and then deted if in fad the button was ever
presed. Next, we extend the CProgresscoclass to implement the interface

Implements | Progres<Cancd

Private Sub IProgressCancd_EnableCancd ()
frm.cmdCancd.Visible = True
frm.Refresh

End Sub

Private Function | Progres<Cancd_Canceled() AsBoodean
IProgresCancel_Cancelled = frm.Cancell ed
End Function

Notice the methods are private --- they are only accessible through the interface Finadly, the
underlying progressform is modified to include ahidden command button cmdCancel that when
clicked, setsthe form's Cancdled flag to True.

LAB: Implementing | ProgressCance

Sinceinterfaces are so important, let's take amoment and implement |Progres€Cancel. Then welll
modify the dient to check our implementation. Youll be workingin the direcory
\VBCOM\Labs\Server-side\; you should run the dient app (" Client.exe") in the Solution\ sub-direcory
before continuing (donit forget to register "ProgresDLL.dII" first). Here ae screen snapshots of what
you'll see

35

i App Main Form |

Let's pretend that prezsing the button starks a long-running operation. ..

[+ Enable Cancel buttan

Show progress indicator. ..

Pogress.. |

A0%

Thefirst step isto implement the interfacein the CProgresscoclass

1.

10.

11

Close the Solution\ sub-dir, and startup VB by opening the projea \VBCOM\L abs\Server-
side\ProgressDLL .vbp. Noticethat |ProgressCancel has arealy been defined, and that
frmProgressalrealy contains a hidden command button (cmdCancd) and a public bodean
property (Cancell ed).

Open CProgress and just below Option Explicit type "I mplements | ProgressCancd”.

Using the wizard bar (the two drop-down lists just under the code window'stitle bar), seled
IProgressCancd from the left drop-down list. Usingthe right drop-down list, stub out eat
method in the interfaceby seleding it. Note that you must stub aut every method, otherwise VB
will not compil e your coclass; recdl that an interfaceis a mntrad which you must fulfill
completely.

Implement each method as shown ealier.

Now build your COM server via File >> Make. Save your changes and exit VB.

Now let's rewrite the dient and test our COM server's new functionality.

Startup VB by opening the projed \VBCOM\Labs\Server-side\Client.vbp. Runthe dient and
convinceyourself that the new COM server is backward-compatible with the existing client
(which has no notion of the new interfacenor the Cancd button).

In cmdProgress's Click event, dedare another objed reference of type IProgressCancd. Then, if
the "Enable Cancd button” chedk box is checked and the progressindicaor objed suppatsthis
interface(TypeOf), type-cast the existing referenceto the new type (Set) and enable the Cancd
button.

Inside the loop, if the Cancd button has been enabled then exit the For-Next loopif the Cancd
button has been pressed. Note that it isthe dient's responsibility to cdl DoEvents during each
iteration of the loopto all ow the recogniti on of other events (such as the pressng of the Cancd
button).

Finally, clea al objed references at the end of the sub (always good pradice when you're done
with areference).

Run your client app, and test al 3 cases. Cancd button not enabled, Cancd button enabled but
never pressed, and Cancd button enabled and pressed. When you are satisfied, build an
exeautable dient app and test it outside of VB.

36

12. That'sit for now; amoreinvolved server-side lab is coming shortly. Goodwork!

Mapping VB to COM

Aswe motivated ealier, MIDL isthe true language of COM. You can lean alot about how VB and
COM work by studying the MIDL that VB generates when you build a COM server. The eaiest way
to dothisisusing OLEView, atod that isinstalled as part of Visual Studio (typicdly with VC++). If
you have OLEView install ed (by default it appeasin Microsoft Visual Studio Toals), runit, scroll to
the bottom where it says "Type Libraries’ , and open to reved the list of all type libraries registered on
your machine. Find the one for the COM server you just built in the previouslab --- *_Progress
Indicaor v2 In-ProcessServer (VBCOM)" --- and dauble-click to reved the MIDL. OLEView is
reverse engineaing the MIDL from the typelibrary. [Note: if you do not have OLEView install ed,
you can still view the MIDL by opening the text file "Progresdndicator.idl” in the direcory
\VBCOM\Demos\.]

What appeasin the type library is every public coclassand interfacedefined in the COM server; Bas
and Form modues are mnsidered private and thus never shown. Also, observe that every VB classis
mapped to a cclasswith a default interface(and O a more other interfaces). Asyou would exped, the
coclassCProgressis defined with 2 interfaces:

uuid(A47EF721-C62511D3-9ECD-0010A4F15889,
version(1.0)

coclassCProgress{
[default] interface_CProgress
interface_|ProgresLCancd;

b

Likewise, a user-defined interfacein VB --- redly just an abstrad class--- is mapped to a noncreaable
coclasswith a default interface

[
od,

UUId(A47EF71E-C625-11D3-9ECD-0010A4F15889,
version(1.0),
hidden,
dual,
nonextensible,
oleautomation
]
interface_IProgresCancd : IDispatch {
HRESULT EnableCancd ();
HRESULT Cancell ed([out, retval] VARIANT_BOOL*);

H

[
uuid(A47EF71F-C62511D3-9ECD-0010A4F15889,

version(1.0),
noncreaable

]

coclass|ProgressCancd {
[default] interface_|ProgressCanced;

H

Finally, notice some of the dtribute keywords. "oleautomation™ tells COM to use the Universal
Marshaler, while "hidden" prevents this information from appeaingin VB's browser or Intelli Sense.

37

To convinceyourself that VB isadually reading the type library, note for example that it should be
possble to dedare objed variables of type _|ProgressCancel (the red name of the interface acording
to the MIDL) even though thistype isn't avail able via Intelli Sense. Thisis done & foll ows:

Dim cancd as[_IProgresCancdl]

(the[] are needed sinceidentifiersin VB cannot start with *_"). Thisdedaration is equivalent to

dedaring the variable of type | ProgressCancd, sinceits default interfaceisalso _|ProgressCancd.

Err or Handling

Recdl that every method in a COM-compatible interfaceis a function that returns an HResult (a 32-bit
integer). You can seethis by reviewingany COM server's MIDL.:

interface_|ProgressCancd : I Dispatch {
HRESULT EnableCancd ();
HRESULT Cancell ed([out, retval] VARIANT_BOOL*);

b

COM uses negative HResults to denote aror conditions. However, asaVB programmer you should
never seeraw HResult values: the VB run-time maps well-known COM error codes to VB-spedfic
error codes and raises an exception (e.g. error #429, "ActiveX component can't crede objed” means
that the underlying COM adivation failed for some reason). Likewise, even though COM hasits own
internal exception handling mechanism, the VB run-time will map COM exceptions raised in the server
into VB exceptions on the dient.

Thus, unless there ae goodreasons to the ntrary, your servers should raise exceptionsto signify
error conditions. In terms of error codes, raise ather VB-spedfic codes or your own custom ones. The
latter are best defined using an enumerated type:

Public Enum ServerErrorCodes

"* aunique aror code
errinvalidArgument = vbObjedError + 512
errUnknownKey ' +1
errOutOfRange ' +2

End Enum
Note that vbObjedError is a predefined constant in VB denoting arange of avail able eror codes; by
convention, add 512to the starting value. To raise one of these erors from your server bad to the

client, smply refer to it by name:

Err.Raise ServerErrorCodes.errinvalidArgument,
"<description>", ...

The dient should trap errors as usual:

On Error Goto Handler

Handler:
Selea Case Err.Number
Case ServerName. ServerErrorCodes.errlnvali dArgument

38

Case ServerName. ServerErrorCodes.errUnknownK ey
Case ServerName.ServerErrorCodes.errOutOf Range
Case Else

En.c.j. Selea

In order for client-side programmers to have accssto the enumerated values, they must be part of the
server'stype library; this occurs automaticdly if the Enum statement resides in one of your server's
public dasses.

Note that if you ever see aarge, negative aror code such as"-2147023174" when working with COM,
you are most likely looking at a raw HResult that VB was unable to map into something more
meaningful. Thisis either an unexpeded error, or an urtrapped server-side aror that has made its way
bad to the dient. At thispoint, you must look at the bits themselvesto determine the source and type
of error (in particular the Fadli ty Code, bits 16-27, and the Error Number, bits 0-15). Thisimplies that
agoodserver-side programming pradiceisto trap al posgble arorsin the server, and raise only well-
documented error codes bad to the dient.

Marshalling

In COM, clients and servers communicate by copying data badc and forth in the form of parameters. A
ByVal parameter resultsin a one-way transmission from client to server; a ByRef parameters resultsin
atwo-way transmisgon (from client to server and badk again). Function return values are aspedal
case, and leal to a one-way transmisgon from the server badk to the dient. Asmentioned ealier, this
information is conveyed in MIDL using the dtributesin and out. For example, this VB function

Public Function SomeTask(_
ByVal i Aslnteger, s As String) AsBoodlean

would appea in MIDL as:
HRESULT SomeTask([in] short, [in, out] BSTR*, [out, retva] VARIANT_BOOL*);

Why isthisimportant? Because in the cae of in-processCOM servers, ByRef parameters are more
efficient sinceByVal requires data mpying to enforcethe semantics. However, in the cae of out-of-
processCOM servers, ByVal is more dficient sincethe marshalling cost is only one-way.

In terms of datatypes, any VB type can be marshaled except for afixed-length string. Thisis pretty
impressve if you stop and think about it: milli on-charader strings, multi-dimensional arrays, variants,
user-defined types (UDTs). For example, a server-side method could return adynamic aray of user-
defined records:

Public Type DataReoord
Name As String
Mail Code As I nteger
End Type
Public Function GetData(_
ByVal filename As String) As DataRecord()
Dim data() As DataRecord

... ** open file, redim array based on
... ’** amount of data, fill array

39

GetData = data ** return a apy of the aray
End Function

The dient can then simply cal this method to get a cpy of the records:

Dim reoords() As ServerName.DataReoord, i AsLong

reqords = server.GetData(" <fil ename>")

For i = LBound(records) To UBound(records)

<processrecords(i)>

Next i
COM will take cae of marshalling the aray from the server badk to the dient --- regardless of array
size and server locaion. Notethat the UDT must be defined in the server's type library; like Enum, this
occurs automaticdly if the Type statement resides in one of your server's public dasses. The use of
UDTsasorequiresNT SH4 o later.

There is one very important case which demands additional discusson: reference parameters. Suppcse
a server-side method returns a Coll edion objed:

Public Function GetColledion() As Colledion
Dim c As Colledion

Set ¢ = New Colledion ** instantiate and
... ** populate the wlledion

Set GetColledion = ¢ "** return ?
End Function

What exadly isreturned badk to the dient? A referenceto the Colledion objed, not the objed itself!

o Proxy ™ stub ™93 Server

Client App Out-of-Process Server

N

e— proxy -t stub —m=o— Collection

In particular, given an out-of-processCOM server, upon return the situation is as foll ows:

The Colledion objed remains on the server, whil e the dient ends up with areference bad to it
(through a proxy-stub pair). This has obvious (negative!) performanceimpli cations when the dient
tries to manipulate the wlledion. The moral of the story isthat in all but afew cases, objeds
themselves are never marshaled, but instead areferenceto the objed. One notable exception isthat of
ADO ReoordSet objeds, which arein fad marshaled between client and server.

40

Building aCOM Server

After designing your interfaces and implementing your coclasses, buil ding the atcual COM server is
the eay part: set afew projed properties, and File >> Make. VB then builds a complete server
including coclasses, type library, class fadory, and self-registration code.

Before runring File >> Make, however, your first dedsion isin-processvs. out-of-process Kegin
mind the trade-offs of performancevs. remote execution and fault tolerance Also, consider surrogates
like MTS which provide avalue-added framework for hosting your in-process grvers on remote
madhines. For in-process ervers, leave the "Threading Model" set to "Apartment Threaded" (the
default, seeProjed >> Properties). For out-of-process ®rvers, you can crede:

1. asingle-threaded server ("Thread Podl" of 1), in which client requests are queued and exeauted
one-by-one,

2. alimited multi-threaded server ("Thread Pod" of N > 1), in which at most N different objeds
within the server can be exeauting concurrently, or

3. amulti-threaded server ("Thread per Objed") in which every objed creaed by a dient outside the
server can be executing concurrently.

Notethat MTS 2.0 is equivalent to case 2 where N = 100. More importantly, take note that the VB

run-time (and COM!) work together to guaranteethat a single VB objed never exeautes two client

reguests at the same time, regardlessof the cdler --- aVB objed always exeautesin asinge-threaded

manner, one request after another. Thisisadcieved by executing VB objedsin what are cdled a

Single-Threaded Apartments (or STAS). Concurrency is achieved (safely!) by having multiple STAs

within the same process case 1 above hasexadly 1 STA, case 2 hasN STAs, and case 3 has an infinite

supply. For example, suppase an out-of-processCOM server was built with a"Thread Pod" of N = 2,

and currently has 4 clients conneded to 3 server objeds as foll ows:

it obect

STA #1

@I objct 2

| client #3 object #3

STA #2

COM Server

coclassi
coclass?2
coclass3

Server Process

Sincethere ae only two STAS, then either al 3 server objedslive in the same STA, or there ae2in
one ad 1in the other (the situation above). In this case, then at most two server objeds will execute
concurrently: objed #1 a objed #2, and dbjed #3. And if objed #3 isexeauting, then it isrunning on
behalf of either client #3 a client #4, but not both. At present, VB objeds are assgned to an STA at
adivation, and you cannot influence this assgnment; the objed remains in the same STA until
deadivated.

41

Next, before you build your COM server, think carefully about the values you choase for the projed’s
Name and Description (Projed >> Properties). The former becomes the programmatic name of the
COM server, whil e the latter serves as the description seen by other VB programmers when they
referenceyour COM server (i.e. seled Projed >> References).

If you have the Enterprise Edition of VB, consider checking the option "Remote Server Files' under
the Component tab of Projed >> Properties. Thiswill generate aseparate standalone type library, as
well asa.VBR file that can be used with the VB utili ty Clireg32 for configuring client machines.
Recdl that when a dient attempts remote adivation, the dient's registry must be properly configured
and the gopropriate type library must be installed.

Finally, always perform one last chedk of the Instancing property for ead of your classes. Thetypicd
settings are Private, PublicNotCreaable, SingleUse, or MultiUse. Obvioudly, your interfaces should be
PublicNotCredable, and your public coclasses MultiUse. The SingleUse option is only availablein
out-of-processCOM servers: a mclass &t to SingleUse caises a separate instance of the COM server
to be loaded and run ead time this coclass is adivated. Generally, you should avoid the use of
GlobalMultiUse and Global SingleUse.

Versioning

We have come to one of the most important --- and subtle --- issues concerning server-side COM
programming. The problemitself is easy to explain: supposeversion 1 of your COM server has been
deployed, and you need to release anew version (1.1) consisting of bug fixes. How do you ensure that
your new COM server is backward-compatible with existing clients? Then, sometime later, suppose
you want to release version 2.0 with added functionality. In this case you need to remain badkward-
compatible with existing clients, yet allow the aedion of new clients that can exploit the alded
functionality. How? This problem is known as the versioning problem.

Actually, the versioning problem is not hard to solve, aslong as you are caeful in your design and
mai ntenance of the COM server. In other words, it's lessof a programming issue and more gout
projed management.

The problem boils down to this: given an existing COM server, what can you safely change without
bre&king existing client code? The answer stems from what dependencies are built i nto those dients.
First and foremost, clients depend on the interfaces to your coclasses. Henceyour interfaces cannot
change. Inparticular, if a mclass C implements an interfacel, then C must continue to implement I.
Furthermore, methods cannot be deleted from |, methods names cannot change, and method signatures
must remain the same (i.e. parameter and return types). Obvioudly, clients also depend on the
semantics of your methods (the function that ead method performs), so this cannot change & well.

The more subtle dependencies arise from v-table bound clients. Recdl that when aVB projed
referencesa COM server'stype library, it buil d a dependency against the type library's GUID. Then,
when the dient is compiled against the type library, VB embeds the necessary CLSIDs and 11 Ds:

** embed equivalent I D

Dim ref As ServerName.InterfacéName
"** embed equivalent CLSID

Set ref = New ServerName.CoclasdName

Thus, v-table bound clients are dependent upon the COM server's GUIDs. On the other hand, late-
bound clients (e.g. code written in scripting languages such as VVBScript) have no such dependencies.
Thisisdueto the fad that late-bound clients use generic objed-based references, and also Progl Ds
instead of CLSIDs. Here'san examplein VB:

Dimref As Objed
Set ref = CreaeObjed(" ServerName.CoclassName")

42

Aslong asthe dient's machineis configured properly, late-bound clients will function corredly
regardlessof the server's GUIDs. Therefore, at leest in the case of v-table bound clients, we seethat
your GUIDs cannot change.

In summary, there ae two things that cannot change from one version of a COM server to another: its
interfaces, and its GUIDs. Thefirst oneiseasy to ded with --- never change an existing interface!
Instead, define anew interfaceand have your coclassesimplement this new interfacein addition to the
current ones. The second oneis harder to ded with, since VB controls when a GUID changes viathe
"Version Compatibili ty" projed property:

ProgressDLL - Project Properties E |

Generall bl ake I Compile Component | Debuggingl

—Skark Mode

) Standalone
% | AtV Gomponent

—Remaote Server

[~ Remote Server Files

—\ersion Compatibility
" Mo Compatibility
" Project Compatibility
% Einary Compatibilicy

I Release\ProgressDLL.dll J

Cancel | Help |

If you seled "No Compatibility", then VB changes al GUIDs --- type library, CLSIDs and 11 Ds ---
asciated with this COM server ead time it isrecompiled. |f you choose "Projea Compatibili ty”,
then VB changes only the I Ds; the type library GUID and all CLSIDs remain the same. Finaly,
"Binary Compatibili ty" meansthat VB retains the same GUIDs as those in the reference version (a
separate COM server file usually kept in a Release\ sub-diredory, e.g. "Release\ProgresDLL .dll" in
the screen snapshot above). Inthiscase VB will also chedk to ensure that you haven't changed any of
your interfaces, warning you during recompil ation if you have.

Obviously, onceyou deploy the first version of your COM server, you should be in Binary

Compatibili ty mode to ensure that future versions of your server remain badkward-compatible. The
purpose of Projed Compatibility isto suppart development mode: the server-side programmer is free
to change their interfaces, while dient-side references to the COM server (and its coclasses) remain
valid. Recadl that type library references are stored in VB projed fil es, while aclassreferences
(CLSIDs) are often embedded in web pages. The last mode, No Compatibili ty, should be used in cases
when the new version isto be completely incompatible with the previous versions --- in ather words,
start-over mode.

This sould sound pretty straightforward. Develop your server in Projed Compatibility, build a
referenceversion in a Release\ diredory, and then switch into Binary Compatibili ty mode.
Unfortunately, there ae a ouple of potholes you neel to be aware of. First, it is perfectly lega to add
an interface/ coclassto a COM server while in Binary Compatibility mode. However, sincethis entity
does not exist in the referenceversion, VB will change its GUID ead time you recompile. Thus, once
you have finished development of your new interface/ coclass you must buil d another reference
version for deployment. Over time, you will end up with numerous reference versions aaoss

43

Releasel\, Release?\, Released)\, etc. Note that your COM server will typicdly referenceto the most
recent version.

Seoond, VB considersit perfedly legal to add a method to an existing interfacewhile in Binary
Compatibility mode. Asabudding COM programmer this should surprise you, sinceinterfaces are
supposed to be immutable! Thus, while aCOM purist thinksin terms of identicd vs. incompatible
interfaces, VB hasthreeposshiliti es: identicd, compatible, or incompatible. Obvioudly, an interface
isincompatible with a previous version if some method has changed, or been deleted atogether. An
interfaceis compatibleif it contains all previous methods (unchanged), yet adds one or more new ones.
Thisisa mmpromise that all ows an interfaceto evolve whil e remaining backward-compatible.
However, to make this work, VB must internally maintain two separate 11 Ds --- one that denotes the
previous interface and another that denotes the new interface(previous methods + new methods).
Existing clients continue to use the former 11D, whil e new clients compiled against the new interface
embed the latter 11D. Eventually, when you are realy to deploy the new server, you must build another
referenceversion, at which time both 11Ds become fixed. Then, if you add yet again more methods,
VB will internally maintain 3 11 Ds, and so forth.

If compatible interfaces und like ahack, you'reright. In most cases they should be avoided,
espedally sincethey only work with default interfaces. The bottom lineisthis: if you arein Binary
Compatibili ty mode, VB will not warn you if you add a method to an interfaceor a mclass(i.e. its
default interfacg. Thisisokay in the latter case, since VB will corredly generate a ©mpatible
interfaceand maintain the necessary I1Ds. However, in the former case --- adding a method to a user-
defined interface--- VB fail sto warn you but also failsto generate a @mpatible interface Y our new
server no longer works with existing clients.

LAB: Server-side Programming with User-defined I nterfaces

Recdl the dient-side front-end you built in an ealier [ab, in which the underlying COM server
(ProductServer) was given to you. Infad, you built two versions of the front-end, mirroring the

& Client front-end for products |

File Products

Bookz j Type Book
Frice 19.95
[Juantity 5

Ezzential COM

b ol Dk

Ship of Gold

The Green Mile

‘T he Perfect Storm

evolution of the COM server. Hereisversion 1:

Version 2 was written to exploit new functionality avail able in the server, in particular an interfacefor
accesgng extra product information:

44

& Client front-end for products

File Products
Bookz j Type Book
Frice 19.95
Essertial COM Quartity |5
b oby Dick Author 5. Junger
Ship of Gold Publisher | . MNarton and Co.
The Green Mile PubDate | 1997

‘T he Perfect Storm

In thislab you will develop the underlying COM server, of which there will be two versions. Asa
refresher, you may want to runthe gplicaions"Client(vl).exe" and "Client(v2).exe" in
\VBCOM\Labs\I nterfaces-client-side\Sol ution\ before continuing.

All lab files are avail able in the diredory \VBCOM\Labs\Interfaces-server-side\. You will start with a
fully-functioning ProductServer, version 1. Thefirst step isthus deployment:

1. Startup VB by opening the server projed "MyProductServer.vbp®. View projed properties, and
note the server's name and description. View the Component tab, and note that the server is
currently in development mode ("Projed Compatibility"). Close the property dialog.

2. Before we can deploy, we must switch into Binary Compatibili ty mode. But before we can do
that, we need to build areferenceversion. So, run File >> Make, creae anew folder cdled
"Releasel”, and huild the DLL into this folder.

3. Now onceagain view the Component tab of projed properties, and switch into deployment mode
("Binary Compatibility"). Make sure the referenceversionis st to
"Releasel\MyProductServer.dll", and click OK.

4. Rebuild your COM server, except thistime save the DLL in the folder above Releasel\ --- i.e.
build the arrent version into the directory \VBCOM\L abs\Interfaces-server-side\.

5. Saveyour work and exit VB.

6. Now it'stimeto build vl of the Client app and make sure MyProductServer works properly:

7. Changeinto the sub-diredory "Client v1", and start VB by opening "Client.vbp". The dient appis
fully-functional, so al you haveto doisbuild it. Note that "Client(v1).exe" isbuilt into the
diredory above, i.e. where the server fileslive.

8. Save awy changes and exit VB.

9. Run vl of the dient app and make sure you have Books, CDs and Videos. Note that there ae no
DVD products, nor is extrainformation avail able @out products such as Books.

10. Pretend afew months have passed, and it's time to generate anew version of your COM server.
The company now sells DV Ds, and has also added extra product information to its database for
Books and Videos. So let's develop version 2 of MyProductServer:

11. Reopen the server projed "MyProductServer.vbp'. Note that you will remain in Binary
Compatibili ty mode.

12. Addanew class module, and name it CDVD. Make sureits Instancing property is st to
MultiUse.

13. Implement the interfacel Product in coclassCDVD. Note that the other coclasses already
implement this interface so you might look there for help (or use Clipbaard Inheritance).

14. Build the server, saving the DLL ontop o the current version --- i.e. save into
\VBCOM \Labs\Interfaces-server-side\, and not into the Releasel\ sub-diredory. You must leave
the referenceversion alone.

45

15.

Hide VB and runthe dient app; it should still work fine. In fad, you should also seeand be ale
to creae DVDs. Thisisdue not only to Binary Compatibility, but also because the dient appis
smart and daesn't limit itself to a predefined set of CLSIDs. Instead, the dient builds ProglDs
based on run-time information and then uses CreaeObjed to instantiate.

Badk in VB, add another classmodule and name it IProductExtralnfo. Set the Instancing property to
PublicNotCreaable. Define the interfaceas follows:

%k

%k

adds a (key, value) pair to the product
(e.g. "Author", "S. King")

Public Sub Addinfo(_

ByVal key As String, ByVa value As String)

End Sub

k%

k%

%k

getstheith (key, value) pair (1 <=i <=InfoCount)
and returns it via parameters,
also returning True if successul else False

Public Function Getlnfo(_
ByVal i AsLong, ByRef key AsString, _
ByRef value As String) As Boolean

End Function

k%

k%

returns the number of (key, value)
pairs for this product

Public Function InfoCount() As Long
End Function

11

Take amoment and save your work.

Now implement this interfacein the aoclass CBook. [Hint: define two private variables, one an
empty array for holding the (key, value) pairs, and the other along for storing the number of
current pairs. In Addinfo, simply ReDim the aray, store the data, and increase the wount. The
other methods dould be self-explanatory.]

Save your work.

In order to test your implementation of the new interface we nead v2 o the dient app (which has
code written against thisinterface. You have three toicesin how you runthe dient. First, you
can creae aprojed group consisting of the dient and the server, and then just run the dient from
within VB; thisisagreda way to debugin-processVB COM servers, since you can set bregkpaints
in either projed and step bad and forth. The second approach is to make the server, and then test
by opening the v2 client projed and running from within VB. Y ou can rebuild the server as
needed, aslong as you close and reopen the dient projed (thisis necessary to successfully rebuild
the DLL, sincethe dient projed isreferencing the server'stypelibrary). The third approachisto
buil d another reference version of the server (fixing CDVD's CLSID and I ProductExtralnfo's 11 D),
build v2 of the dient into an EXE, and then you can safely run the EXE whil e rebuil ding the server
as neaded.

Let'stake gproach #3, sincethe dient is already written and now is as goodatime a any to build
the next reference version (since we dorit plan to add aher interfaces nor coclasses to this release
of MyProductServer).

Badk in the server projed, run File >> Make, creae anew folder cdled "Release2", and huild the
DLL into thisfolder.

Very important: change the projed properties < that the reference version is now
"Release2\MyProductServer.dil". Also, sincewe're here, change the Magjor version number to 2
(under Make tab).

Now rebuild the server again, except save the DLL above the Release? diredory. Thisisnow
your current version.

Save your work.

With that done, we @n now build v2 of the dient app without fea of breaking compatibility aswe
apply bug fixesto the server. Change into the sub-diredory "Client v2", open "Client.vbp", and
build the dient app " Client(v2).exe" into the diredory above. Closethe dient projed.

Outside of VB, runthe v2 client app. Y ou should be &leto view Books, CDs, DVDs and Videos.
Also, if the interfacewas implemented properly, you should be &le to click on abodk and see

46

extra product information. If not, you need to debug the server (MsgBox debugging?), rebuil d,
and rerunthe dient app.

12. Oncethe server isworking, the last step is to implement | ProductExtral nfo within the CVideo
coclass Sincethisis smply an implementation detail, you can rebuild MyProductServer to make
this added functionality avail able to the dient app (i.e. there is no need for another reference
version at this point).

13. Go aheal and complete the server by implementing | ProductExtral nfo within CVideo. Rebuild the
current version, save your work, and exit all running instances of VB.

14. Thefirst test isto unregister the current version of MyProductServer and run both versions of the
client app; neither should display any products.

15. Next, register Releasel of the server and run bath versions of the dient app; they should run
identicdly, displaying Books, CDs and Videos, yet no extrainformation.

16. Unregister Releasel and register Release2. Both versions of the dient app should run, but in this
cese differently.

17. Finaly, unregister Release2 and re-register the arrent version. In thiscase vl of the dient should
behave & before, but v2 should display extra product info for Videos as well.

18. That'sit, excdlent work!

Debugging

Unfortunately, debugging isafad of life. The goodnewsisthat you can use VB's ourcelevel
debugger on bath client-side and server-side VB code. You can set bregkpaints, step badk and forth
between client and server, etc., with very few restrictions.

For in-processVB COM servers, simply creae aprojed group in VB containing the dient projed and
the server projed(s). Runthe dient as you would normally, and debug. For out-of-processVB COM
servers, keep the dient and server as sparate projeds. Thefirst step isto open the server projed, set
bre&points, and start it running. Then open the dient, set breskpoints, and start debugging. When
you're done, don't forget to stop and restart the server as necessary. Note that out-of-process grvers
beoome single-threaded when debugged in this manner.

Limitations

Normally, public datain a.BAS moduleis global and thus dared throughout the projed. However, in
the cae of COM servers, thisis not necessrily the ase. Infad, the only reliable way to share state
amongst objedsin a COM server isto huild a single-threaded version, an expensive priceto pay for
global variables. But if you redly need to, build your COM server with a Threading Model of either
"Single Threaded" (for in-procesg or "Thread Podl of 1" (for out-of-procesy. Or better yet, consider
the use of a surrogate like MTS, which provides fadliti es for just this purpose.

Perhaps the most critical limitation is that scripting clients --- most commonly associated with web
pages --- cannot accessuser-defined interfaces. In other words, scripting clients are limited to the
default interfaceonly. How significant isthis? Very, given theimportance of interfacebased
programming and the popularity of scripting clients. For example, consider the COM server you just
finished building in the lab, MyProductServer. It contains 4 coclasses, none of which contain public
methods --- hencetheir default interfaces are empty. Thus, MyProductServer is entirely unusable from
the perspedive of a scripting client (such as VBScript, JavaScript, WSH, |IE, or ASP).

Asaresult, there ae numerous (inelegant!) workarounds to enable scripting clients to accessuser-
defined interfaces. Here ae two of the most commonly used approaches. Thefirst ideaisto duplicae
every interface-based method with a public method. For example, consider method InfoCount of
interfacel ProductExtral nfo from the lab:

47

Publi c Function InfoCount() As Long
End Function

When implemented within a coclass it appeasas:
Private Function IProductExtralnfo_InfoCount() As Long

End Function
In this case, we simply add a public function that cdls the private one:

Public Function InfoCount() As Long
InfoCount = IProductExtralnfo_InfoCount()
End Function

Thisworks fine assuming name lli sions can be avoided and the interfaces are not changing (although
you can adways add methods). The second approadh is a bit more work, but enables default interfaces
to evolve in conjunction with user-defined interfaces. The ideaisto wrap a austom coclass and its
default interface aound eadt user-defined interface

Scripting -
Client
._
._
Scripting e
Client

Thus, aCOM server with N user-defined interfaces needs at least N additi onal wrapper coclasses
within the server. While there ae various ways to implement wrapper classes, the foll owing approach
requires exadly N wrappers, regardliessof the number of coclassesin the server. The example below is
based once gyain on IProductExtralnfo, and would denote anew coclass ClProductExtral nfo within
MyProductServer:

Server

"** we have acces to the user-defined interface
Private server As |ProductExtralnfo

"* scripting client must cdl thisfirst
Public Sub Conned(progid As String)

Set server = CreaeObjed(progid)
End Sub

Public Sub Addinfo(ByVal key As String, ByVa value As String)
server.Addinfo key, value
End Sub

Public Function Getlnfo(_
ByVal i AsLong, ByRef key As String, _
ByRef value As String) As Boolean
Getlnfo = server.GetInfo(i, key, value)
End Function

Publi c Function InfoCount() As Long
InfoCount = server.InfoCount()
End Function

"** scripting client should cdl thislast

48

Public Sub Disconned()
Set server = Nothing
End Sub

The cdein the scripting client ends up looking very similar to v-table bound code:

Dim server As Objed
Set server = CredeObjed(_
"MyProductServer.ClProductExtralnfo")
server.Conned "MyProductServer.CBook™
server.Addinfo "Publisher”, "MS Ress'

server.Disconned
Set server = Nothing

That'sit.

Just a bit more COM...

If youve made it thisfar, congratulations arein order! You are well on your way to becoming aVB
COM programmer. Thereisjust one sedion remaining, since we have yet to discuss the two most
important COM interfaces: 1Unknown and IDispatch.

49

COM Interfaces

No treament of COM would be complete without a discusson of | Unknown and | Dispatch, the two
most important interfacesin COM. Every COM objed is required to implement IlUnknown, asit forms
the underpinnings of reference counting and RTTI (run-time type identification). The IDispatch
interfaceis what enables late-bound clientsto cdl a COM objed without any compil e-time
information.

The IUnknown interface onsists of only 3 methods:
[
odl,
uuid(00000@O-00006-0000-CO00-000M0000046),
hidden
]
interfacelUnknown {
HRESULT Querylnterfacg [in] GUID *riid, [out] void **ppv);
ULONG AddRef();
ULONG Release();
}
The first method, Querylnterface supparts RTTI with regards to interfaces: a dient can cdl this
method to seeif the objed supparts a particular interface The latter two methods, AddRef and Release,
enable reference ounting: a dient cdls AddRef to increase the objed's reference munt, and Release to
deaeaethe murt.
One of the rules of COM isthat every coclassmust implement IlUnknown. In fad, every interfacemust
include these threemethods. Using MIDL, thisis easily expressed via C++ style inheritance:
interfacel Somelnterface: lUnknown

If you define your interfagesin VB, IUnknown is automaticdly inherited for you. More importantly, if
you build your COM serversin VB, suppart for IlUnknown is automatically implemented by each
coclass
The question is: asa VB programmer, when do you call these methods? Never! Infad, VB prevents
you from cdling lUnknown dredly. Instead, the VB run-time cadls the methods for you as appropriate.
For example, in VB we use the TypeOf operator to seeif an objed implements a given interface

“** cdl to underlying QI

If TypeOf product Is | ProductExtral nfo Then

End If
Thistrandatesinto a cdl to Querylnterface where areferenceto | ProductExtralnfo's GUID is passd
asthein parameter. Likewise, we use the Set statement to set and clea referencesto an objed. These
are trandated into cdlsto either AddRef (and QI) or Release:

If TypeOf product Is IProductExtralnfo Then

Dim extra As ProductServer.| ProductExtral nfo

“* 1. cdl to QI, and then AddRef if QI successful
Set extra = product

** 2. cdl to Release

Set extra = Nothing

End If
Note that in case 1, the product objed isfirst queried to seeif it supparts |ProductExtralnfo (extra's
datatype); if the answer is yes, then AddRef is cdled since an additional referencewill now exist to the
objed. Case 2 represents an explicit cdl to Release; if you forget to set areferencevariable badk to
Nothing, VB is suppased to cdl Release for you when the variable goes out of scope.
Conceptually, suppart for IlUnknown is denoted by alollypop o top o an objed:

50

=

In redity, when av-table bound client connedsto an objed via some interface the dient is conneded
to the virtual table for that interface Since every interfacemust suppart IlUnknown, its methods are the
first three entriesin thistable. For example, suppcse a dient is bound to the user-defined interface

I ProductExtral nfo. Then their objed referenceisredly pointing to the underlying v-table:

3

Server

A v-table is nothing more than a jump table to the adual methods.

Unlike lUnknown, which must be implemented by all COM objeds, IDispatch is required only if the
objed wishesto suppart late-bound (i.e. scripting) clients. Objeds which implement IDispatch are
known as scriptable objeds.
Why do late-bound clients require objeds with a spedal interface? Recadl that late-binding occursin
VB when we use the Objed data type:

"** g eneric objed-based reference

Dim obj AsObjed

"** instantiate some aclass..

Set obj = CreaeObjed(progid)

** cdl some method...

obj.MethodA(...)
Given that COM programming is interfaceprogramming, the question becomes: "what interfaceis obj
referencing?' Logicdly, it's the default interface sincethat is the only interfaceavail able to late-bound
clients. But the default interfaceis not known until the coclassis adivated at run-time --- at compil e-
time, when VB hasto generate mde (e.g. to cal MethodA above), it has no ideawhich coclasswill be
instantiated. Thus, the solution isfor VB to asaume the existence of asingle physicd interfacein all
scriptable objeds, and that interfaceis I Dispatch.
Thisimpliesthat IDispatch must be very flexible, sincethis one interfacemust suppart all possble
default interfaces. Interestingly, 1Dispatch inherits from lUnknown and then adds only four methods:
[
od,
uuid(0002040-0000-0000-C000-0000000046),
restricted
]
interface | Dispatch : I[Unknown {
HRESULT GetTypel nfoCount(...);
HRESULT GetTypelnfo(...);

HRESULT Getl DsOfNames([in] GUID* riid, [in] char** rgszNames,
[in] UINT cNames, [in] ULONG Icid, [out] long* rgdispid);

51

HRESULT Invoke([in] long dispidMember, [in] GUID* riid,
[in] ULONG Icid, [in] USHORT wFlags, [in] DISPPARAMS* pdispparams,
[out] VARIANT* pvarResult, [out] EXCEPINFO* pexcepinfo,
[out] UINT* puArgErr);
b
In fad only the last two methods are strictly necessary. The first, Getl DsOfNames, maps a method
name to adispatch id. The second, Invoke, takes the dispatch id (and any in parameters), makes the cdl
to the adual method for you, colleds the results from the out parameters, and returns.
Once gyain, VB prevents you from cdling thisinterfacediredly, and instead cdls the methods for you.
For example, consider the foll owing late-bound code, which is accessng the default interfaceof the
progressindicator coclassdeveloped ealier:

"** interfacebased referenceto I Dispatch

Dim progressAs Objed

"** Activate, Ql, AddRef
Set progress= CredeObjed("ProgresDLL.CProgress’)

"** (1) get dispID for Value, (2) invoke with 0
progressValue=0

"** (1) get displD for Show, (2) invoke
progress Show

** cdl to Release

Set progress= Nothing
In essence every method cdl from the dient through the default interfaceresultsin 2 cdls through
IDigpatch. This, plusthe overheal of processng the parameters, is the reason late-bound clients are
often 3-10x slower than v-table bound clients to the same object. [We saw this slowdown in a previous
lab.]
While conceptually alate-bound client is connected to the objed’s default interface inredity it isv-
table bound to the arresponding IDispatch interface For example, in the cae of the progress

Server
m_.' Querylnterface =
AddRef -
Release i
|GetTypelnfoCount] i
GetTypeinfo [—= Get Value
GetIDsOfNames |~ Let Value
Invoke —=| code Show
Hide

indicator's default interface the dient redly sees the foll owing:

Observe how the default interfaceis avail able behind Invoke.

Asyou might exped, if you define your interfacesin VB, they will automaticaly inherit from
IDispatch. Y ou may even have noticed this during our discusgon of server-side COM programming,

52

when we used OLEView to reverse enginee MIDL from VB-generated type li braries. For example,

here'sthe adual MIDL for the progressindicator's default interface

[
od,

uuid(A47EF720-C625-11D3-9ECD-0010A4F15889,

version(1.0),
hidden,

dual,
nonextensible,
oleautomation

]

interface_CProgress: | Dispatch {

[propget] HRESULT Vaue([out, retval] short*);
[propput] HRESULT Value([in] short);

HRESULT Show();
HRESULT Hide();

} H
Not only doesit inherit from I Dispatch, but notice the keyword attribute dual. A dual interfaceis one
that can be used by both v-table bound and late-bound clients. VB aways produces dual interfaces, and

also generates the necessary suppat code when these interfaces are implemented by VB coclasses.
In other words, if you define your interfaces and build your COM servers drictly in VB, then your
coclasses will automaticdly suppat both types of clients. VB acmmplishes this by building virtual
tables which form a union of lUnknown, IDispatch, and the interface's methods. Thus, in the case of
the progressindicator's default interface a dient adually connects to the foll owing v-table;

cient

Server
Queryinterface i
AddRef N
Release e
GetTypelnfoCount f——=
GetTypelnfo e
GetlDsOfNames |
Invoke .
Get Value
Let Value
Show
Hide

V-table bound clients have accssto al 11 methods, while late-bound clients seonly the first 7.
Thereis, however, alarge carea you must kego in mind: even though wser-defined interfacesin VB
are duals (and implemented as such), late-bound clients are still limited to default interfaces only.

Thislimitation is orthogonal to the issue of dual interfaces.

Well | eave that to the next, and final, sedion. For good @ bad :-), we're mming to the end of the

tutorial...

code

53

Conclusions

At the start of this tutorial, we motivated COM by stating its primary benefits: component-based
development, language-independence, location transparency, and software evolution. Asthistutorial
comes to a dose, we hope you have begun to seethe importance of these benefits, and the dfort to

which COM goesin redizing them.

These benefits do not come cheagp. As happensall too dten in Computer Science, gainsin
programmabili ty and maintai nabili ty come & the expense of performance COM isno dfferent. Asa
reference point, consider the foll owing performancefigures (all values represent "method cdls
completed per second"):

out-of-process

out-of-process

out-of-process

IN-process (local) (LAN) (WAN, coast-to-coast)
4-byte param 129041 1765 495 18
100-byte param 119240 968 342 16

Whil e these figures are afew years old and may have changed, the implicaions have not: (1) out-of-
processCOM is 100-1000times more costly than traditional method cdls, and (2) cost is based
primarily on the distance between client and server, not speed nor the amount of data. And there's not
much you can do to reducethis cost, except minimizethe total number of cdls which occur between
client and server.

COM has other costs as well, in particular administrative and training. The former requires good
management, and the latter of course requires goodtraining --- we hope this tutoria serves asagood
start :-)

COM isexpensive. Isit worthit? Yes.

The goodnewsisthat Visual Basic significantly lowers the entry costs of using COM. Asyou have
seanin thistutorial, VB and COM work together to automaticaly handle astaggering number of
issues. From the dient's perspedive, VB:

e turnstypelibrariesinto Intelli Sense
takes care of the adivation sequence
can exploit both v-table and |ate binding
generates the necessary cdlsto IlUnknown
handles differences in threading models

e marshalsnealy al possible datatypes
On the server-side, VB automaticdly maps any classyou define into a COM-compatible entity, beit an
interfaceor a mclass Y ou can build an in-processor an out-of-process grver with the flip of a
property, and VB generates all the necessary infrastructure: type library, class factory, self-registration
code, dud interfaces, threading suppart, marshalling, etc. And while VB's notion of binary
compatibility is not perfed, it's ahuge step in the right diredion.
Still not convinced as to the power of VB? Then just ask any C++ programmer :-)

Anyway, we hope you had fun, and leaned a thing or two about COM. And perhaps, when your
journey is farther along, you too will fed compelled to stand up in a aowded bar and yell "COM is
lovel".

Before you leave, afew serious recommendations. Look into surrogates for hosting your in-process
COM servers, most notably Microsoft Transaction Server (MTS). And consider defining your
interfaces separate from your coclasses, to ease the pain of maintaining binary compatibili ty; use MIDL
or VB.

Take cael

54

