Design Patternsin XML Applications

by Fabio Arciniegas A.
Part II: XML-spedfic patterns

Patterns are auseful technique for the transmission of knowledge ebout reaurrent (SR F=Ne R0 o (a1t |

problems in software development. This article, the second of two complementary eIntroduction

pieces (seePart | here), isfocused on XML-spedfic patterns as oppased to «XMLable Pattern
traditional design patternsin XML spedfic contexts. ePatternsin DTD Structures
For the first part of this article, some basic knowledge @out UML classdiagrams «Patterns in Element

will be useful (seeour basic UML class diagram guide). For the second part, some Definitions

basic knowledge of XML DTDs, such as entities, will also be useful. <A Little Advice

What are XML patterns? *References

XML Patterns denotes two kinds of patterns. (1) Program Design Patterns, spedficdly treaing XML-related
problems; and (2) Information Structuring Patterns, for the design/implementation of DTDs, schemas etc.
XML patterns of the first kind tend to be compasitions and refinements of traditional design patterns. Y et the
processof naming and clealy defining them helpsin two ways:

e It buildsa cmmmon base language and base of knowledge for typicd XML applicéions, thusimproving

understandabili ty, and empowering developers at all | evels of expertise.

e |t helps XML integrate into the Objed Oriented mainstream.
XML patterns of the second kind, those for information design, are focused on finding solutions for common
problemsin the design of document type definitions (DTDs).
The number of XML patternsis growing quickly, so choosing which onesto present has not been an easy task. |
have dedded to present here cmmon patterns in the three caéegories that seem to be most stable in the XML
patterns arena: Patterns for Program Design, Patterns for DTD design, and Patterns for DTD Implementation.
XML patternsis a formidable subjed, which these aticles can only hope to introduce This article istherefore an
invitation to further explore patterns, rather than a caalog of XML patterns. This exploration is not without its
pitfalls, which iswhy | have included a short guide of common misconceptions and warnings at the end of this
article. | hope that potential pattern writers can make use of them in order to build a deaer common base of
knowledge.
Our tour of XML patterns garts with XML patterns in processng appli cations, examining the "XMLable" pattern.

XML Patternsin Processng Applications
XML Patternsin DTD structure
XML Patternsin Element Definition
A Little Good Advice
Acknowledgements and References

Feb. 16, 2000Design Patternsin XML Applications: Part Il

XML Patternsin Processng Applications

by Fabio Arciniegas A. XML applicaion design patterns (abbreviated here & " XADP") are named, reusable
solutions for common problems at the gplication level. They are often refinements of traditional patterns.

Because of their nature, XADPs can be eaily and neatly expressed in the same way traditional patterns are usually
presented. That is, in sedions for the name, synopsis, context, solution, consequences, and related patterns.

The following pattern is atypical XADP, cdled the "XMLable pattern.” 1t has been succesully used in a number of
applicdions, and tackles one common problem in XML-aware gplicaions: the @nstruction of internal
representations of XML data & meaningful objeds.

XML able pattern

Also known as " XML-reader/writer"
Originator: Fabio Arciniegas A.

Synopsis

The XMLable pattern defines a solution to managing information that is persisted as XML data, but must also be
managed as meaningful objeds (i.e., not as a general data structure such asthe DOM) inside an application.
Context

Suppose you are writing an e-mail program that uses XML documents for the persistence of the messages. Thisis
pretty useful sinceyou can dothingslike gply various dylesheets to these documents and get all sorts of nice
presentations for them. But you also need to upload and manage that information into your program: you need
objeds that represent your messages.

Keegpingthe DOM representation of every objed can be very memory-intensive, espedally when you are managing
alarge number of messages. More importantly, DOM objeds contain no semantics whatsoever about being a
message. There is no such thing as an interface @abling other objedsto interad with it as an e-mail message (no
setSender(String) ,hogetDate() , just plain DOM manipulation). Choosing to maintain the DOM
representation of hundreds of messagesisin most cases abad design dedsion; using it would probably lead to a
poaly structured, hard to maintain program.

The XMLable pattern addresses the problem of how to creae email objeds by using the data mntained in the XML
document without having to kegy the DOM representation in memory.

The solution that the pattern suggestsisto provide the emailMessage class with a partner class

email XML PersistenceManager, whose sole resporsibili ty isto make the objed persist in an XML representation.
Whether recovering the state of the objed or seridizingit in XML, it is the PersistenceManager and not the objed

<<Interface>>

EmailProgram *MLable
XM LWrite()
Q XMLRead()

creates A

EmailxMLFPersistenceManager

EmailMessage synchronized

itself that handles this adivity.

Forces
The considerations that lead to the general solution proposed by the XM Lable pattern are:
e Multiple objeds, whose data is gathered from XML documents, need to be manipulated internally.
e Memory restrictions make DOM prohibitive.
e Designand program quality impose the neal to represent the data & omething more meaningful to the
applicaion domain than the DOM tree

Solution
<<Interfaces> *E:EAH Irri_:ﬁe;fac sl:-:-
WMLPersistencemMgr ocurmentHand er
HMLWrite() StartElement()
EndElemeant)
e b StartDocurnent()
HegisterxiLabl
7 & EndD ocument()
Creafes
or
A Synekronizes :
HhLableAbstractClass (= Concrete hr;:; I_rFlEr\s istence
Zl | subseribes
0.-
H“hiLableConcreteClass W
Parser

Thisfigure shows a dass diagram depicting the dasses and interfaces participating in the XMLable pattern. The
descriptions of the roles played by these dassesin the pattern are below:

Client

A container resporsible for the aeaion d the XML ableConcreteClassinstances. In the e
mail example, thisisthe Email Program class

XMLableAbstractClass

Gathers (provides the base classfor) different classes that can be made persistent through the
use of the correspordent ConcreteX M LPersistenceMgr.

XMLableConcreteClass

The adua classwhaose instances will be registered with the ConcreteX M L PersistenceMgr
andfinaly saved as XML. In the email example, thisisthe EmailMessage dass

XML PersistenceMgr

A simpleinterface dedaring the methods that provide XML persistenceto an oljed. This
also dedares amethodto register the ancrete XML PersistenceMgr objed with the XMLable
objed.

ConcreteXM L PersistenceMgr

Thisisthe aore of the pattern. The dassimplements the XML PersistenceMgr interface. It is
also resporsible for construcing the XMLable objed from XML documents. To dothat, the
classimplements the DocumentHand er methods (defined by SAX) in order to be aleto
update the registered classfrom the XML source

DocumentHand er (defined in SAX)

The ConcreteX M L PersistenceMgr needsto be informed of basic parsing events. In order to
do so, it implementsthisinterface &d registers with the SAX parser. The parser uses the
instanceto report basic document-related events such asthe start and end o elements.

Consequences
o All the cmmplexity involved in managing the persistence of the objed is difted to the PersistenceMgr.
e Thereisatight coupling between the XMLable dassand the PersistanceMgr.
o Thesizeof the XMLable objedsissmaller. Thisis very useful in appli caions handling many instances of
the XMLable dass
o Responsibility for instantiation and update of the XMLable objed iswell separated, allowing for the
credion and manipulation of the objed even outside of the XML persistence process
Related Patterns
e High Cohesion: This pattern encourages putting spedalized methods in spedal-purpose dasses. The use of
the PersistenceMgr is a good example of a High Cohesion pattern.
e Singleton: The Singleton pattern ensures that only one instance of a dassis creded. This can be the cae
for the PersistenceMgr class if, among other reasons, concurrency considerations must be eaily minimized.

e Balking: If an objed's method is cdl ed when the objed is not in an appropriate state to exeaute it, the
method returns without doing anything. This pattern is useful for systems implementing PersistenceMgr as
a Singleton, but where the dient may start concurrent requests to save XMLable objeds.
In this :dion we saw a wmmon example of an XML pattern for XML processng applicaions. In the next sedion,
we will study XML patternsfor DTD structuring.

XML Patternsin DTD structure

These patterns are named solutions to reaurring problemsin the overall structure of document types. Note that the
term DTD here is applied in the sense of document type definition. These patterns are not restricted to any given
form of XML schema definition.

DTD structure patterns are usually small er than appli cation design patterns. Therefore, two examples will be
presented. For more information, seethe links in the resources sdion.

Choice Reducing Container

Originator: Toivo Lainevoal
Synopsis
When creainglarge DTDs with many logicd units, authors might be required to learn alarge number of these units
to know how to use the DTD. Reducing the number of choices the author has to make & any point in the DTD (by
grouping related elements beneah newly introduced elements) will reduce the burden on the author.
Context
InaDTD with many logicd units, a user of adocument can be overwhelmed with the number of choices that have
to be made. With many options users have adifficult time knowing how to compose dl of the dements avail able.
Thisis common in large, genera -purpose DTDs where many logicd units are presented.
Forces
e Either becaise of the nature of the datato be represented, or becaise of the intention of making the DTD
applicable in many situations, large numbers of logicd units need to appea inthe DTD.
e Severa of the dements can be naturally grouped as members of a higher abstradion (e.g., "magnolia’ and
"rose" under "flowers").
e Theleaningprocessof the user wantsto be simplified, presenting him or her with a small number of
choices at ead point.
Example
Hereisa DTD fragment that presents alot of choiceto the aithor:
<IELEMENT Doc (Para | OrderedList | UnorderedList | Figure
| Artwork)+>
Here the author has 5 different elements to choase from after creaing the doc element. This choice muld be limited
by introducing rew elements, and grouping some of the existing elements together as children of the new elements,
likethis:
<IELEMENT Doc (Para | List | lllustration)+)>
<IELEMENT List (OrderedList | UnorderedList)>
<IELEMENT lllustration (Figure | Artwork)>

Cross-Cutting M etadata

Also known as "Factoring Metadata”

Originator: Fabio Arciniegas A.

Synopsis

During the definition of aDTD, it isnot unusual to find several elements $aringa common set of metadata needs.
The CrossCutting M etadata Pattern identifies such common subsets and encgpsul ates them, in order to make a
cleaer DTD.

Context

Elements often have associated metadata (e.g., aunique identifier). Furthermore, many elements can share the same
metadata needs. Thisis often the asein DTDsfor element coll edions. Suppose you are developing aDTD for the
items of amusic and video shop. Y our items, represented as elements, are bound to have many metadata needsin
common: an identifier, an avail abili ty status, or maybe arecommendation status. The structure proposed by the
Cross-Cutting Metadata Pattern is to encgpsul ate these ammmon metadata needs (very often in a parameter entity),
leading to a better organized and more maintainable DTD.

Forces

The nealsthat leal to the use of this pattern are straightforward:

e There ae anumber of elements that have metadata requirements.

e These dements share asubset of those requirements.

e Thenumber of elements and the size of the subset are big enough to make the inclusion of a parameter
entity (or an attribute group in XML: Schema) an improvement in readabili ty and maintainability, instead
of adding "bloat." For example, if there ae only 2 elements, and the only thing they shareisID,
introducing an extra @nstruct is not an improvement.

Solution

Cross-Cutting M etadata takes the mmmon subset of metadata needs and expressesit in whatever mechanism the
schema definition language provides for encgpsulation (e.g., parameter entitiesin XML DTDs). It then includes this
congtruct in al the dements that share it. The pattern simply factors the metadata out of several elements. Even
though metadata is often expressed in attributes, the pattern can also be gplied if the metadataisin the form of
elements.

Consequences

e Common metadatais easier to locdize, and thus essier to modify.

e When applied to alarge number of elements, readabili ty is grealy improved.

o Reusability of metadata dedarationsis easier to achieve.

Example
This smple example deds with the music and video store DTD mentioned above. Consider theinitial dedarations:
<IATTLIST video

id ID #REQUIRED

available (yes|nolonrequest) "onrequest”

onSale CDATA #FIXED "yes">

<IATTLIST CD
id ID #REQUIRED
available (yes|nolonrequest) "yes"
recommendation CDATA #IMPLIED >
From these dedarations we can derive aparameter entity using the Cross-Cutting M etedata pattern:
<IENTITY % cross-cutting-metadata "
id ID #REQUIRED
available (yes|no|onrequest) onrequest"
>

<IATTLIST video
%cross-cutting-metadata;
onSale CDATA #FIXED "yes"

>
<IATTLIST cd
%cross-cutting-metadata;
recommendation CDATA #IMPLIED
>

We can then simply include this entity in all the dement dedarations that share them.

Not only has readabili ty improved, but maintainabili ty is higher as well. Now, when we need to add additi onal
metadata to ead element (e.g., "onSal€e"), we can easily and safely add it without enduring the eror-prone process
of including it manually on each element type.

XML Patternsin Element Definition

Arguably, the most widespread kind of XML patterns are those related to DTD content. These patterns are named
solutions to reaurring problems in the design of element types.

Not al patterns can or should be expressed in the same way. For instance, traditional behavioral patterns commonly
have adiff erent expression from data definition patterns. In this dion, | opted to keep the layout for the patterns as
defined by Liam Quin.

Running Text

Originator: Liam Quin
This pattern isincluded in its original formulation.
Synopsis
The Running Text Pattern is used for general textual content that may contain markup at the phrase, word, or symbal
level, but not at the block level.
Actors
The Running Text Pattern has these participants:
e Block Level Elements. The environment in which the pattern occurs.
e Internal Markup: Markup that can occur within Running Text.
e Running Text Definition: The implementation of Running Text.
Markup
Running Text is usually represented in a Document Type Definition as a Parameter Entity. The adua elements
listed will vary from DTD to DTD, depending on the gplicaion; the Pattern spedfies only the use of the entity
RunningText:
<IENTITY % RunningText

#PCDATA|Quote|Emphasis|MathML|Phrase|BibRef]|
FootNoteReference

>
The pattern is used in the content model of other elements:
<IELEMENT FootnoteBody
(%RunningText;)*
>
The purpose of asingle definition for Running Text is two-fold: firstly, to encgpsulate the mncept of generic
running text, making the intent of a document type definition cleaer; secondly, to ensure that the same set of basic
elementsis all owed everywhere text is all owed.
Additional elements can be alded for a spedfic situation as follows:
<I[ELEMENT PlaceName
(%RunningText;|PlaceAlias|GridReference)*
>
Processng
This pattern does not require spedal processng. It is normally only seen by a validating XML processor.
Variations
In a complex Document Type Definition, it may be convenient to include other parameter entities in the definiti on of
RunningText:
<IENTITY % RunningText

#PCDATA|Quote|Emphasis|Phrase|BibRef|
%elements.footnotes;|%elements.MathML;

>

Marker Attribute

Originator: Fabio Arciniegas A.
Synopsis
The Marker Attribute Pattern is used when certain elements need to be marked via an attribute so they can be
processd in adifferent way by a style shed/program that recognizes the mark.
Actors
The Marker Attribute Pattern has threeparticipants:
e Marker Attribute: The marker is an attribute whose only purposeisto signal a binary state. If the dtribute
is present, the dement must be treged dfferently.
e Marked Element: The dement that may contain the Marker Attribute.
e Processing Application: The responsibility for performing the spedal adion if the mark is encountered.
Thisisusually encgpsulated in a style shed.
Markup
The markup necessary for this pattern is reduced to an attribute dedaration:

<IELEMENT video (title,artist,whatnot)>

<IATTLIST video onSale CDATA #FIXED "yes">

and, passbly, the gopeaanceof the dtribute in the XML instance:
<video onsale="yes">

Processng
As mentioned above, a key charaderistic of this pattern is outside of the XML document. The spedal behavior
derived from the marking is usually achieved by means of a style shed. The foll owing example shows asimple cae.
Example
A Marker Attribute for items on sale can be gplied to the dements of a hypotheticd DTD for videos as shown
above. A simple XSLT style shed can take cae of aspedal presentation for the marked elements:
<xsl:if test="@onSale">

<h4>

<xsl:value-of select="artist"/> is on sale.

</h4>
</xsl:if>
<!-- handle the rest of the element -->

Advicefor the Use and Creation of XML Patterns
by Fabio Arciniegas A.

A Little Good Advice

During the use and creation of patterns, several misconceptions and pitfalls
can be encountered. Since XML patterns are no exception, | would liketo
finish by briefly highlighting some of the main trouble spots. For more advice
on healthy pattern use, | recommend John Vilissides book " Pattern
Hatching" (seeReferences).

Patterns Are Not the Holy Grail

Patterns are apowerful way to communicae expertise: they creae a @mmon design language, they help make your
system more understandable to athers, etc.... But they are not a replacement for credivity, nor are they automatic
quality assurances. Patterns are just another tool in your box—Ilean them, use them, enjoy them, but dont
overestimate them.

Tautologies Are Not Patterns

This phenomenon seems to have mwoled davn in the traditional pattern world, but it appeasto till be aproblemin
the XML patterns arena. XML "patterns’ that merely state atautology like "use an attribute where an attributeis
needed" are not useful for anyone. This problem was pointed out along time ago by Rick Jelliffe, but still seems
common enough to merit mentioning here.

Patterns Are Not Restricted to Particular Aspedsof XML Applications

Depending on our personal badkground, we tend to seesome aeas as more suitable for pattern creaion than others.
Some people take this to extremes, claiming XML patterns can only be used in particular situations. Thisis
obviously a mistake. Oppartunitiesto help others gain expertise dout reaurrent problems and solutions arisein
every area Patterns are agrea too—we dorit have to restrain ourselves, let's use them wherever they are useful!

Conclusion

This concludes our brief introduction to XML Patterns. Please write to me (fabio@viaduct.com) if you have
questions, suggestions, or want to discuss further work in this field.

Acknowledgements and References
| would like to thank Liam Quin, Rubby Casall as, and Toivo Lainevod for their contributionsto this article.

Bibliography

Erich Gamma, Richard Helm, Ralph Johnson & John Vili ssides, 1995 Design Patterns. Elements of Reusable
Object Oriented Software.

John Vili ssides, 1997, Pattern Hatching.

Sherman R. Alpert, Kyle Brown, Bobby Wodlf, 1998, The Design Patterns Smalltalk Companion.

lan Graham and Liam Quin's web pages"Introduction to XML Design Patterns' at
http://www.groveware.com/xmlbodk/patterns.html

Rick Jelliffe, 1998 The XML & SGML Cookbook: Recipes for Sructured Information, Charles F. Goldfarb Series
on Open Information Management, ISBN 0-13-6142230.

Seealso

More XML patterns can be found at Toivo Lainevoadl's forthcoming site, http://www.xml patterns.com/

