Part One: Traditional Patternsin XML applications
by Fabio Arciniegas A.

Adequate documentation of the experience gained during the devel opment of |
XML-based systemsis a prerequisite for XML's siccessas awidely used “Doc n
technology. Design patterns have proved to be avery goodtechnique for ADeS'“ (g;::;a;tserns In XML
transmitting, and to some extent formali zing, knowledge @out reaurring problems
and solutions in the software development process

This article, the first of two articleson XML and design patterns, is focused on the Wrapper Pattern
appli cabili ty of some well-known design patterns to XML-spedfic contexts. elterator Pattern
This article assumes ome basic knowledge dout XML processng. Also, basic 'Wi :
knowledge adout UML class diagrams will be useful (seeour basic UML class

diagram guide).
What ar e patterns?

Patterns are an effedive way to transmit experience dout reaurrent problems. A pattern is a named, reusable
solution to areaurrent problem in a particular context.

Patterns are not miraculous red pes that will work in every scenario, but they do convey important knowledge, a
standard solution, and a common language aout areaurrent problem. All this makes them powerful designtodls.
Since @mmon problems with (often) common solutions appea in many scenarios, patterns are now used in almost
every part of development: there ae processpatterns, architedural patterns, implementation patterns, testing
patterns, etc. However, one particular kind of pattern has receved speda attention from the development
community: design patterns. Design patterns are apowerful reuse mechanism, and away to talk about design
dedsionsthat acdually work.

The expresson XML patterns may be used to denote two kinds of patterns: (1) design patterns pedficdly treaing
XML-related problems, and (2) information structuring patterns for the design of DTDs, schemas, etc.

XML patterns will be discussed more fully in the next article. Here we will focus on the gpli cabili ty of traditional
design patternsto the design of XML applicdions.

Traditional design patterns are often classified in categories. One common set of categoriesis structural patterns and
behavioral patterns. In this article we will explore the goplicability of patternsin ead of these cdegoriesto XML
problems.

The patterns we will discussare: Command pattern, Flyweight pattern, Wrapper pattern, and Iterator pattern. The
choiceof patterns for this article notwithstanding, any other pattern can be goplied to the design of XML
applicdions.

Choasing the right patternsto present has not been easy. | have tried to maintain a balance between the different
options, thus there ae two structural and two behavioral patterns; two DOM -oriented and two event-based
applicdion discussions; and two of the patterns are ill ustrated using C++ and two using Java.

«Command Pattern
*Flyweight Pattern

Command Pattern

Synopsis

Command isa behavioral pattern used to encapsulate actionsin objects. This
Is highly useful when you want to keep track of changes made to a model, for
examplein supporting multi-level " do/undo.”

Structure

Thefollowingisa dass diagram of the command pettern. Slightly different versions of this pattern can be found in
the literature, however, | choseto present it in this fashion for clarity.

o — :

Invoker

send Commande to CommandiManager
createg and uees -maxundaLevel : int = -1
L +gueuneCommand (o Command) ;. woid
+forwvard (amount :int=1): woid
AbstractCommand +back (amount:int=1): woid
+do (7 Bool b t
+unda () boal T
gchedules
controle (changee ower
il
ConcreteCommand Receiver

Modifieew

Figure 1. Command Pattern Structure

XML Context

Suppose you are buil ding an appli cation that uses the DOM representation of an XML document as its basic data—
say a ommponent for displaying vedor graphics, or a simple shoppng list manager.

The user of your program will perform many operations, like deletions and additi ons. Since you are using the DOM
as your underlying model, these changes will sooner or later trandate into cdl s to removeChild and ather DOM-
spedfic cdls. However, depending on how you structure your program, these changes can bemme éther a hard-to-
maintain, hard-to-extend mess or an organized, extensible solution. Here is where the command pettern can help.
Let's take the shopping list editor as an example. The user wantsto delete, add, and annotate the shopping list,
among other operations. Y ou use aGUI, so one option would be to hard-code your menu widgets member cdlsto
DOM-spedfic methods. For example, when the user seleds the menuitem "Insert,” cdl insertChild. Thishasa
number of "advantages':

e Such codeisfast to write.

e Most GUI builderswill "lead" you towards this.

e It can be soft in terms of resource @nsumption.

It seemslikeit could be ared choice but now you want to add undo/redo suppart to your program, and serious
problems regarding this option become gparent:

e There seems no easy way to maintain your do/undo list: either you change dl your hardcoded widget
eventsto cdl both the DOM methods and log to some list, or you change your DOM representation to
somehow log the changes performed (1)

e Evenif you managed to successully implement the do/undo lists from the hardcoded widget cdls, you
would be replicating that logic many times, which is hard to maintain and error-prone.

e Thereisno clea indicaion asto which part of your program will manage the undo logic and how it will do
it.

The solution that the command pattern proposesis to encgpsulate the dhangesto the DOM into oljeds, command
objects, ead cgpable of doing (and undoing) a particular adion. The olledion of command oljeds will be
managed by a cetain command manager, capable of holding the queue of executed commands, so the user may
undo/redo them.

Example

This example refleds a very common approach to DOM processng wsing the ommand peattern. If you will be
writing appli cations using DOM as the underlying data structure representation, you are very likely to find this
approach useful.

Invoker

gend commande towe

credtes [and ussew CommandManager
Lk -maxUnooLevel : int = -1
AbstractConmmated +gueueCommAnd (©: Command) ;. wold
+forvard {ancunt int=1) : woid
+elo () bool . +back famount :int=1): woid
+unda () : bool g
echedulee ?
controle Fhanges overe
Receiver
DeleteCommand | 9=letes current nodes kModeltdanager

scurrentMode: xamlMode *#
+[dom representation] :

arde fragmentIneerted 3e a chi

AddCommand

+fragmentIneserted: xamliode

*

Figure 2. Command Pattern Structure
The figure shows the structure of atypicd DOM-oriented applicaion using the mmmand pattern for its message
passng. The followingisthe header file for the base dassAbstractCommand, which isthe foundation of the

example. Please refer to command.zip for the complete example mde.

Invoker

gend commande towe

1

creates [and usseew Commandl'u'la_na_ger
L -mAaxUndoLevel : int = -1
AbstractCommand +queneCommand (c: Command) : woid
+forwvard (anount ;int=1): woid
+elo () bool . +back (amount :int=1): woid
+unda () boal b
echedul e 9
controle Fhanges overws
Receiver
DeleteCommand | 92letes current nodew kModeltMdanager

-currentMode: amliode *
+[dom representation]

adde fragmentIneserted ag a chi

AddCommand

+fragmentIneerted: xamliode

*

Figure 3. Command Example Header

/**

AbstractCommand is the base class for all commands.

It provides do/undo operations as well as getDescription and
getState operations for the easy tracking of the executed commands.
(quite useful when keeping a menu of last performed operations).

*

class AbstractCommand

1 i

{
public:
/**@name Comparison operators
* The comparison operators in the base AbstractCommand are
* provided in order to keep STL usability in the CommandManager
*
na{

/Il equality operator
virtual int operator==();

/I unequality operator
virtual int operator!=();

/Il increment operator
virtual void operator++();

@}

**@name Do / Undo methods
*/
Ha{

/Il Pure virtual operation that in child classes encapsulates the
logic of the change
virtual Notification do() = 0;

Il Pure virtual operation that in child classes encapsulates the
logic of undoing a change
virtual Notification undo() = 0O;

[** Pure virtual operation that in child classes returns the description
of the operation
* (particularly useful for undo/redo lists presented to the user)
*/
virtual string getDescription() = 0O;
@}
h

Note that even when this example is written in C++, the main principles (and even the cde) can be ported to other
languages with ease.

Summary of Common XML Uses

My personal experience shows that the command pattern is espedally useful in XML appli cations when:
e You have aDOM-based applicaion and need to keep tradk of the changes made to the data model.
e You have aDOM-based applicaion and need to kegp open the posshility for easy and clean extension of
the available commands that can be performed on the data model.
Inthis :dion we analyzed Command, a behavioral pattern, in objed-model-based XML applicaions. In the next
sedion, we will see astructural pattern in event-based XML applications, Flyweight.

Flyweight Pattern
Synopsis

Flyweight is a structural pattern used to suppart alarge number of small objeds efficiently. Several instances of an

objed may share some properties. Flyweight fadors these common properties into asingle objed, thus saving
considerable space ad time otherwise mnsumed by the aedion and maintenance of dupli cae instances.

Structure

FhyweightFactory Flyweight

+intrineicsState:
: Elyweighte

+getFlyweight (key:): Elwweight

Client N

+extrineicState:

Figure 4. Flyweight Pattern Structure

XML Context

One of the biggest problems with keeuing the DOM representation of the document, instead of constructing your
own objeds from the output of SAX (or another event-oriented interface, isthe size of the representation. In this
discussion we assume not only that you want to roll your own domain-spedfic objeds, but that you want them to be
as aceefficient as possble.

Suppose you are writing a SAX-based appli caion that constructs CD objeds from afile cdled
musicCollection.xml . At the end of parsing you might want a lledion of CD objedsto be creaed. Those
objeds may look like:

+¥ear: int
+Artistiame: String
+Title: String

Figure 5. Initial CD structure
Asyou probably aready noticed, al the information about the artist (in this example we use only one, for
simplicity) may be replicated many times. (Noticetoo that this artist information is unlikely to change over time.)
Thisisa dea candidate for factorization into what we'll cdl aflyweight: afine-grained ohjed that encapsul ates
information (usually immutable) shared by many other objeds.
Remember that CD objeds sould be mnstructed from an XML file that might look somewhat like this:
<?xml version="1.0"?>
<collection>
<cd> <!-- This is quite simplistic, better XML
representations could have been
chosen, but it only aims at
illustrating the pattern -->
<title>Another Green World</title>
<year>1978</year>
<artist>Eno, Brian</artist>
</cd>

<cd>
<title>Greatest Hits</title>
<year>1950</year>
<artist>Holiday, Billie</artist>
</cd>
<cd>
<title>Taking Tiger Mountain (by strategy)</title>
<year>1977</year>
<artist>Eno, Brian</artist>
</cd>
</collection>

You deddeto use Java and a SAX parser to dothe job. Now you must construct a set of SAX handlers capable of
creding CD objeds with flyweight artists. Thiswill be the subjed of our example.

Example

The basic logic for the SAX handler is smple:

e Whenever aCD open tag isfound, creae anew CD objed.

e Whenevertitle oryear elementsarefound, enter them in the current CD.

e Whenever anartist element isfound, ask the artist factory to createit. Thisis fundamental to the
problem: the CD objea does not know if it is sharing this objead with others; only the fadory keeps track of
what has been creaed.

Thefollowing code il lustrates a simple fadory for the extrinsic objeds, and the output produced by the example
program if run with the ébove XML file.

Flyweight Example: Factory

/I Simple Flyweight factory for Artist classes (Artist is the extrinsic,

/I flyweight class. CD is the client)

import java.util. Hashtable;
import java.lang.String;

public class ArtistFactory {
/I Whenever a client needs an artist, it calls this method. The client
/ doesn't know/care whether the Artist is new or not.

Artist getArtist(String key){

Artist result;
result = (Artist)pool.get(key);
if(result == null) {

result = new Artist(key);

pool.put(key,result);

System.out.printin("Artist: " +key + " created");
}
else

System.out.printin("Artist: " +key + " reused");
return result;

Hashtable pool = new Hashtable();

}

Flyweight Example: Output
$ java -Dorg.xml.sax.parser=com.ibm.xml.parser.SAXDriver \
FlyweightDemo music.xml
Artist: Eno, Brian created
Artist: Holiday, Billie created
Artist: Eno, Brian reused
Artist: Eno, Brian reused
Artist: Eno, Brian reused

For the complete amde, please download flyweight.zip
At the end dof the parsing, the adual objed structure will be:

acd b o cocdd
< cextrinsicStater » Year <<extrinsicStater » Vear <<gxtrinsicStater » Year
¢ cextringic State: » Title <<extrinsic Stater » Title < cextringic State: » Title
|]]
e artist FAyweight billie: artist Fyweight

¥

- artistFactory

< <intringic State> » Artisthlame <<intrinsicState: » ArtistMame 6

Figure 6. Flyweight Object Diagram - Example

Summary of Common XML Uses

The flyweight pattern is useful in XML appli cations when:
e You have adomain-spedfic representation of your document, and you want to keep it as snall as posshle
by taking advantage of shared information among objeds.
Thisis often the asel
Inthis :dion we analyzed Flyweight, a structural pattern useful in event-based XML applicaions. In the next
sedion, we will examine Wrapper, another structural pattern, also in an event-based context.

Wrapper Pattern

Synopsis

Wrapper isastructural pattern used to all ow an existing pieceof software to interad in an environment diff erent
fromitsoriginally intended one. Wrapper is very similar to the famous Adapter pattern. The diff erence between the
patterns is not predominantly structural, but rather in their intentions: Adapter seeksto make an existing objed work
with other known objeds that exped something, while Wrapper is focused on providing a different interface
(without knowing in advanceits clients) and solving platform/language issues.

C"Ent regquecste w wrapper

delaggatesw

Adaptee

Structure

Figure 7. Wrapper Pattern Structure

XML Context

Wrapper is one of the most easily identifiable patternsin the XML world. Even though its explanation is very
simple, it is worth mentioning because of its frequency.

A wrapper pattern is used every time an existing parser is adapted to work in another language. A new interfacethat
uses constructs of the new language is defined, yet little or no change in the functionality takes place

One common source of wrappersin XML is James Clark's expat. Wrappers for expat (developed in C) have been
written in numerous languages. Several wrappers are avail able for C++ (including expatpp), Perl, and ather
languages.

In the example, we will look at the original C interfaceof expat, and the C++ wrapper that adapts it for objed-
oriented manipulation. See &so the end of the example sedion for pointers to complete wrappers of expat.

Example

Expat works by cdling functions, cdled handlers, when certain events occur (for more eout expat, refer to Clark
Cooper's XML.com article on expat). The following isasmall part of the original expat interface defining the type
of ahandler, and a function to register handers for listening to "start element” and "end element" events:

Original expat interface

/* atts is array of name/value pairs, terminated by O;
names and values are 0 terminated. */
typedef void (*XML_StartElementHandler)(void *userData,
const XML_Char *name,
const XML_Char **atts);

void XMLPARSEAPI

XML_SetElementHandler(XML_Parser parser,
XML_StartElementHandler start,
XML_EndElementHandler end);

Expat can be used dredly in a C++ projed, however, several wrappers have been devised to take alvantage of C++
syntax. A goodexample is Andy Dent's expatpp.
All expatpp daesis smplify theinterfacefor C++ programmers by wrapping an expat parser in a dass.
Simplification with expatpp
class expatpp {

public:

expatpp();

~expatpp();

operator XML _Parser() const;

Il overrideable callbacks
virtual void startElement(const XML_Char* name, const XML_Char** atts);
virtual void endElement(const XML_Char* name);
virtual void charData(const XML_Char *s, int len);
virtual void processinglnstruction(const XML_Char*
target, const XML_Char* data);

In order to adapt the expat interfacefor the new objed-oriented cdls, the constructor binds the expat cdl backs to the
corresponding method. Thus, al you have to doin order to handle aparticular kind of event isto override the
method in a subclass If you have never worked with expat, this could be alittl e confusing, but dont worry. The key
to understanding it isto look at the mde itself: wrapper.zip

Summary of Common XML Uses

The wrapper pattern is useful in XML appli catiions when:

e Youwant to reuse apieceof XML software in an environment different from the one initially intended.
In this sdion we reviewed Wrapper, a structural pattern useful for adapting XML appli cations and processors. In
the next and final sedion, we will seelterator, a behavioral pattern that is very useful in objed-model-based
contexts.

|terator Pattern

Synopsis
Iterator is a behavioral pattern used to accessthe dements of an aggregate sequentially, without expasing the
aggregate's underlying representation. It is particularly useful when you want to encgpsulate spedal logic for the

7
Collection Abstractlterator
+poeition:
+reset ()
+oext ()
. +atEnd ()
(Hlent +previoue |)

|C0ncretelterator|

traversal of astructure like aDOM tree

Figure 8. Iterator Pattern Structure

XML Context

Suppose you are writing atodl that usesthe DOM asitsinternal data representation mechanism. Presumably, there
are alot of adions you want to perform on the members of this coll edion of elements: search for a particular
element, delete dl elements with agiven name, print elements of certain type, etc.
Sinceyou have read the command pattern sedion, you dedde to implement those adions as Commands, so now you
have anice extensible way of working with those dements:
applyToAll(AbstractCommand action) {
/I traverse the whole tree applying action to each
// node
}
Thisisgood However, you start to notice different traversals can work better in some cases, and some adions only
need to work on certain kind of objeds. So you start wondering about a way to isolate the traversal logic from the
rest of the program.
The solutionisin the iterator pattern. Using the iterator pattern you can creae aparametric method applyAll that
expeds not only a generic adion, but a generic iterator:
applyToAll(AbstractCommand action, Abstractlterator iterator) {
for(iterator.reset(); literator.atEnd(); iterator.next()) {
action.target(iterator.value());
action.do();
}
}
Now you can invent iterators for all kinds of traversals: pre-order, post-order, in-order, pre-order only over text
elements, etc., without having to change asingle line of your (already compad and elegant!) method.

Example

Theiterator presented traverses the alledion (the DOM) by levels, printing first all CD elements, then all titl e, yea,
artist, and finally all the text elements. Here isthe ade for such an iterator:
Iterator Sample code

/**
*kkkkkkhkhhhhhhhhhhhkhrkrkrkkhkkkhkhkhkhhhhhhhhhhhhhrhhkrrkkrkkhkkhkhhhhhhhhhhhriirx

* Name: Levellterator
* Description: This iterator traverses the tree by levels.

* Note that it could be replaced in the main program for

* any other iterator conforming with AbstractlteratorlF,

* without changing anything in the main program logic.
*kkkkkhkkkkhkkhkkhhkhkkhhkhkhhhhkhhhhhhhhkhhhhkhhhhkhhhhkhhhhkhhhhkhhhhkhhhhkhhhhhhihkhhkixk
*

import org.w3c.dom.*;
import java.util.Vector;

public class Levellterator implements AbstractiteratorlF {
public boolean end() {
return (aux.size() == 0);

}
public void next() {
if(aux.size() > 0) {
current = (Node) aux.elementAt(0); //first get the new next element
aux.removeElementAt(0);

/I now add all of its children to the end... a typical
/I level traversal.
if (current.hasChildNodes()) {
NodeList nl = current.getChildNodes();
int size = nl.getLength();
for (inti=0; i< size; i++) {
aux.addElement(nl.item(i));
}

public Node getValue() {
return current;

public Levellterator(Node c) {

current = c;
aux.addElement(current);
}

Node current;
Vector aux = new Vector(); //auxiliar vector for the sublevels
}
Thisisthe output of the IteratorDemo program that uses the previous iterator to walk the music.xml example
from the Flyweight sedion.
Iterator Sample Output

Node Name: collection
NodeValue: null

Node Name: #text
NodeValue:

Node Name: cd
NodeValue: null

Node Name: cd
NodeValue: null

Node Name: #text

NodeValue: Eno, Brian

Node Name: #text

NodeValue: The Drop

Node Name: #text

NodeValue: 1999

Please refer to iterator.zip for the complete ade.

Summary of Common XML Uses

The iterator pattern is useful in XML appli caions when:

e You redl to encgpsulate the way you walk agiven colledion. Most of thetimein XML applicaions, this

colledion will be aDOM tree

Iterator concludes this overview of the use of design patternsin XML applications. A forthcoming article will
present an introduction to some patterns with particular applicaionsto XML.
Design patterns are apowerful way to improve the quality and comprehensibility of your XML applications. Make
sure to review the bibliography. You will certainly find more waysto boast your XML devel opment.
If you have comments or questions, the author may be contacted at fabio@viaduct.com

Bibliography

Erich Gamma, Richard Helm, Ralph Johnson & John Vili ssides, 1995 Design Patterns. Elements of Reusable
Object Oriented Software.

John Vili ssides, 1997, Pattern Matching.

Sherman R. Alpert, Kyle Brown, Bobby Wodlf, 1998, The Design Patterns Smalltalk Companion.

10

